Global: device: gpu epoch_num: &epoch_num 500 log_smooth_window: 20 print_batch_step: 100 save_model_dir: ./output/det_repsvtr_db save_epoch_step: 10 eval_batch_step: - 0 - 1000 cal_metric_during_train: false checkpoints: pretrained_model: openocr_det_repvit_ch.pth save_inference_dir: null use_visualdl: false infer_img: ./testA save_res_path: ./checkpoints/det_db/predicts_db.txt distributed: true model_type: det Architecture: algorithm: DB Backbone: name: RepSVTR_det Neck: name: RSEFPN out_channels: 96 shortcut: True Head: name: DBHead k: 50 # Loss: # name: DBLoss # balance_loss: true # main_loss_type: DiceLoss # alpha: 5 # beta: 10 # ohem_ratio: 3 # Optimizer: # name: Adam # beta1: 0.9 # beta2: 0.999 # lr: # name: Cosine # learning_rate: 0.001 #(8*8c) # warmup_epoch: 2 # regularizer: # name: L2 # factor: 5.0e-05 PostProcess: name: DBPostProcess thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5 score_mode: 'slow' # Metric: # name: DetMetric # main_indicator: hmean # Train: # dataset: # name: SimpleDataSet # data_dir: ./train_data/icdar2015/text_localization/ # label_file_list: # - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt # ratio_list: [1.0] # transforms: # - DecodeImage: # img_mode: BGR # channel_first: false # - DetLabelEncode: null # - CopyPaste: null # - IaaAugment: # augmenter_args: # - type: Fliplr # args: # p: 0.5 # - type: Affine # args: # rotate: # - -10 # - 10 # - type: Resize # args: # size: # - 0.5 # - 3 # - EastRandomCropData: # size: # - 640 # - 640 # max_tries: 50 # keep_ratio: true # - MakeBorderMap: # shrink_ratio: 0.4 # thresh_min: 0.3 # thresh_max: 0.7 # total_epoch: *epoch_num # - MakeShrinkMap: # shrink_ratio: 0.4 # min_text_size: 8 # total_epoch: *epoch_num # - NormalizeImage: # scale: 1./255. # mean: # - 0.485 # - 0.456 # - 0.406 # std: # - 0.229 # - 0.224 # - 0.225 # order: hwc # - ToCHWImage: null # - KeepKeys: # keep_keys: # - image # - threshold_map # - threshold_mask # - shrink_map # - shrink_mask # loader: # shuffle: true # drop_last: false # batch_size_per_card: 8 # num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/icdar2015/text_localization/ label_file_list: - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - DetLabelEncode: null - DetResizeForTest: # image_shape: [1280, 1280] # keep_ratio: True # padding: True limit_side_len: 960 limit_type: max - NormalizeImage: scale: 1./255. mean: - 0.485 - 0.456 - 0.406 std: - 0.229 - 0.224 - 0.225 order: hwc - ToCHWImage: null - KeepKeys: keep_keys: - image - shape - polys - ignore_tags loader: shuffle: false drop_last: false batch_size_per_card: 1 num_workers: 2 profiler_options: null