import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding.""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution.""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class AsterBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None): super(AsterBlock, self).__init__() self.conv1 = conv1x1(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet_ASTER(nn.Module): """For aster or crnn.""" def __init__(self, in_channels, with_lstm=True, n_group=1): super(ResNet_ASTER, self).__init__() self.with_lstm = with_lstm self.n_group = n_group self.out_channels = 512 if with_lstm: self.out_channels = 512 self.layer0 = nn.Sequential( nn.Conv2d(in_channels, 32, kernel_size=(3, 3), stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True)) self.inplanes = 32 self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50] self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25] self.layer3 = self._make_layer(128, 6, [2, 1]) # [4, 25] self.layer4 = self._make_layer(256, 6, [2, 1]) # [2, 25] self.layer5 = self._make_layer(512, 3, [2, 1]) # [1, 25] if with_lstm: self.rnn = nn.LSTM(512, 256, bidirectional=True, num_layers=2, batch_first=True) self.out_planes = 2 * 256 else: self.out_planes = 512 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, planes, blocks, stride): downsample = None if stride != [1, 1] or self.inplanes != planes: downsample = nn.Sequential(conv1x1(self.inplanes, planes, stride), nn.BatchNorm2d(planes)) layers = [] layers.append(AsterBlock(self.inplanes, planes, stride, downsample)) self.inplanes = planes for _ in range(1, blocks): layers.append(AsterBlock(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x0 = self.layer0(x) x1 = self.layer1(x0) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x5 = self.layer5(x4) cnn_feat = x5.squeeze(2) # [N, c, w] cnn_feat = cnn_feat.transpose(2, 1).contiguous() if self.with_lstm: rnn_feat, _ = self.rnn(cnn_feat) return rnn_feat else: return cnn_feat