import torch.nn as nn from .det_mobilenet_v3 import ConvBNLayer, ResidualUnit, make_divisible class MobileNetV3(nn.Module): def __init__(self, in_channels=3, model_name='small', scale=0.5, large_stride=None, small_stride=None, **kwargs): super(MobileNetV3, self).__init__() if small_stride is None: small_stride = [2, 2, 2, 2] if large_stride is None: large_stride = [1, 2, 2, 2] assert isinstance( large_stride, list), 'large_stride type must ' 'be list but got {}'.format( type(large_stride)) assert isinstance( small_stride, list), 'small_stride type must ' 'be list but got {}'.format( type(small_stride)) assert len( large_stride ) == 4, 'large_stride length must be ' '4 but got {}'.format( len(large_stride)) assert len( small_stride ) == 4, 'small_stride length must be ' '4 but got {}'.format( len(small_stride)) if model_name == 'large': cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'relu', large_stride[0]], [3, 64, 24, False, 'relu', (large_stride[1], 1)], [3, 72, 24, False, 'relu', 1], [5, 72, 40, True, 'relu', (large_stride[2], 1)], [5, 120, 40, True, 'relu', 1], [5, 120, 40, True, 'relu', 1], [3, 240, 80, False, 'hard_swish', 1], [3, 200, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 480, 112, True, 'hard_swish', 1], [3, 672, 112, True, 'hard_swish', 1], [5, 672, 160, True, 'hard_swish', (large_stride[3], 1)], [5, 960, 160, True, 'hard_swish', 1], [5, 960, 160, True, 'hard_swish', 1], ] cls_ch_squeeze = 960 elif model_name == 'small': cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'relu', (small_stride[0], 1)], [3, 72, 24, False, 'relu', (small_stride[1], 1)], [3, 88, 24, False, 'relu', 1], [5, 96, 40, True, 'hard_swish', (small_stride[2], 1)], [5, 240, 40, True, 'hard_swish', 1], [5, 240, 40, True, 'hard_swish', 1], [5, 120, 48, True, 'hard_swish', 1], [5, 144, 48, True, 'hard_swish', 1], [5, 288, 96, True, 'hard_swish', (small_stride[3], 1)], [5, 576, 96, True, 'hard_swish', 1], [5, 576, 96, True, 'hard_swish', 1], ] cls_ch_squeeze = 576 else: raise NotImplementedError('mode[' + model_name + '_model] is not implemented!') supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] assert scale in supported_scale, 'supported scales are {} but input scale is {}'.format( supported_scale, scale) inplanes = 16 # conv1 self.conv1 = ConvBNLayer( in_channels=in_channels, out_channels=make_divisible(inplanes * scale), kernel_size=3, stride=2, padding=1, groups=1, if_act=True, act='hard_swish', ) i = 0 block_list = [] inplanes = make_divisible(inplanes * scale) for k, exp, c, se, nl, s in cfg: block_list.append( ResidualUnit( in_channels=inplanes, mid_channels=make_divisible(scale * exp), out_channels=make_divisible(scale * c), kernel_size=k, stride=s, use_se=se, act=nl, name='conv' + str(i + 2), )) inplanes = make_divisible(scale * c) i += 1 self.blocks = nn.Sequential(*block_list) self.conv2 = ConvBNLayer( in_channels=inplanes, out_channels=make_divisible(scale * cls_ch_squeeze), kernel_size=1, stride=1, padding=0, groups=1, if_act=True, act='hard_swish', ) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.out_channels = make_divisible(scale * cls_ch_squeeze) def forward(self, x): x = self.conv1(x) x = self.blocks(x) x = self.conv2(x) x = self.pool(x) return x