import numpy as np import torch from .ctc_postprocess import BaseRecLabelDecode class ARLabelDecode(BaseRecLabelDecode): """Convert between text-label and text-index.""" BOS = '' EOS = '' PAD = '' def __init__(self, character_dict_path=None, use_space_char=True, **kwargs): super(ARLabelDecode, self).__init__(character_dict_path, use_space_char) def __call__(self, preds, batch=None, *args, **kwargs): if isinstance(preds, list): preds = preds[-1] if isinstance(preds, torch.Tensor): preds = preds.detach().cpu().numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob) if batch is None: return text label = batch[1] label = self.decode(label[:, 1:].detach().cpu().numpy()) return text, label def add_special_char(self, dict_character): dict_character = [self.EOS] + dict_character + [self.BOS, self.PAD] return dict_character def decode(self, text_index, text_prob=None): """convert text-index into text-label.""" result_list = [] batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): try: char_idx = self.character[int(text_index[batch_idx][idx])] except: continue if char_idx == self.EOS: # end break if char_idx == self.BOS or char_idx == self.PAD: continue char_list.append(char_idx) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list).tolist())) return result_list