import numpy as np
import torch
from .ctc_postprocess import BaseRecLabelDecode
class ARLabelDecode(BaseRecLabelDecode):
"""Convert between text-label and text-index."""
BOS = ''
EOS = ''
PAD = ''
def __init__(self,
character_dict_path=None,
use_space_char=True,
**kwargs):
super(ARLabelDecode, self).__init__(character_dict_path,
use_space_char)
def __call__(self, preds, batch=None, *args, **kwargs):
if isinstance(preds, list):
preds = preds[-1]
if isinstance(preds, torch.Tensor):
preds = preds.detach().cpu().numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob)
if batch is None:
return text
label = batch[1]
label = self.decode(label[:, 1:].detach().cpu().numpy())
return text, label
def add_special_char(self, dict_character):
dict_character = [self.EOS] + dict_character + [self.BOS, self.PAD]
return dict_character
def decode(self, text_index, text_prob=None):
"""convert text-index into text-label."""
result_list = []
batch_size = len(text_index)
for batch_idx in range(batch_size):
char_list = []
conf_list = []
for idx in range(len(text_index[batch_idx])):
try:
char_idx = self.character[int(text_index[batch_idx][idx])]
except:
continue
if char_idx == self.EOS: # end
break
if char_idx == self.BOS or char_idx == self.PAD:
continue
char_list.append(char_idx)
if text_prob is not None:
conf_list.append(text_prob[batch_idx][idx])
else:
conf_list.append(1)
text = ''.join(char_list)
result_list.append((text, np.mean(conf_list).tolist()))
return result_list