from transformers import pipeline import soundfile as sf import numpy as np import librosa import gradio as gr from IPython.display import Audio as IPythonAudio import torch import tempfile asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en") #sound to text model tr = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) #text translator model narrator = pipeline("text-to-speech", model="facebook/mms-tts-spa") #text to speech spanish demo = gr.Blocks() def transcribe_long_form(filepath): if filepath is None: gr.Warning("No audio found, please retry.") return "" audio, sampling_rate = sf.read(filepath) #reading the converted .wav #converting audio into one dimension (stereo audio has 2, audio and spacial audio. We dont need spacial) audio_transposed = np.transpose(audio) audio_mono = librosa.to_mono(audio_transposed) IPythonAudio(audio_mono, rate=sampling_rate) #converting to same sampling rate as model audio_16KHz = librosa.resample(audio_mono, orig_sr=sampling_rate, target_sr=16000) output = asr( audio_16KHz, max_new_tokens=256, chunk_length_s=30, batch_size=12, ) text_translated = tr(output["text"], src_lang="eng_Latn", tgt_lang="spa_Latn") completed_translation = text_translated[0]['translation_text'] narrated_text = narrator(completed_translation) # Save the narrated audio to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmpfile: sf.write(tmpfile.name, narrated_text['audio'][0], narrated_text['sampling_rate']) return tmpfile.name mic_transcribe = gr.Interface( fn=transcribe_long_form, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Audio(label="Translated Audio"), flagging_mode="auto") file_transcribe = gr.Interface( fn=transcribe_long_form, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Audio(label="Translated Audio"), flagging_mode="auto", ) with demo: gr.TabbedInterface( [mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"], ) demo.launch()