import streamlit as st from pycaret.regression import * from pathlib import Path path_root = Path(Path.cwd()) from pycaret.datasets import get_data data = get_data('insurance') s = setup(data, target = 'charges') best = compare_models() evaluate_model(best) with st.sidebar: st.sidebar.markdown("# Regression Feature ❄️") evaluation_option = st.selectbox("evaluation", ["residuals", "error", "cooks", "rfe", "learning", "vc", "manifold", "feature", "feature_all", "residuals_interactive", "parameter", "tree"]) st.markdown("# Regression❄️") st.markdown("## Evaluation") image_options = {"error": "Prediction Error.png", "residuals": "Residuals.png"} try: st.markdown(f"## {evaluation_option}") plot_model(best, plot = evaluation_option, save = 'images') st.image(str(path_root.joinpath(f"images/{image_options[evaluation_option]}"))) except e: st.text(e) print(evaluation_option)