import os from smolagents import LiteLLMModel from agents.single_agent import create_single_agent from loguru import logger from config import get_ollama_api_base, setup_logger, load_api_keys, get_model_id setup_logger() load_api_keys() # Set environment variables for API keys if needed os.environ["GEMINI_API_KEY"] = str(os.getenv("GEMINI_API_KEY")) use_local = False model_id = get_model_id(provider='openrouter') logger.info(f"Initializing with model: {model_id}") if use_local: # If using Ollama, we need to specify the API base URL # Initialize the LLM model based onx configuration api_base = get_ollama_api_base() logger.info(f"Using Ollama API base: {api_base}") model = LiteLLMModel(model_id=model_id, api_base=api_base) else: model = LiteLLMModel(model_id=model_id) # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' # Prompt the user for the song name song_data = "Ascending - Unna notte che non passa" agent = create_single_agent(model) prompt = f"""1. Find and extract the lyrics of the song: {song_data}. 2. Perform deep lyrics analysis and add translation in case it is not in English. 3. Return full lyrics and analysis results in a pretty human-readable format. """ # Agent execution agent.run(prompt)