import torch import numpy as np import torch.nn.functional as F import torch.nn as nn class CustomTverskyLoss(nn.Module): def __init__(self, alpha=0.1, beta=0.9, size_average=True): super(CustomTverskyLoss, self).__init__() self.alpha = alpha self.beta = beta self.size_average = size_average def forward(self, inputs, targets, smooth=1): # If your model contains a sigmoid or equivalent activation layer, comment this line # inputs = F.sigmoid(inputs) # Check if the input tensors are of expected shape if inputs.shape != targets.shape: raise ValueError("Shape mismatch: inputs and targets must have the same shape") # Compute Tversky loss for each sample in the batch tversky_loss_values = [] for input_sample, target_sample in zip(inputs, targets): # Flatten tensors for each sample input_sample = input_sample.view(-1) target_sample = target_sample.view(-1) # Calculate the true positives, false positives, and false negatives true_positives = (input_sample * target_sample).sum() false_positives = (input_sample * (1 - target_sample)).sum() false_negatives = ((1 - input_sample) * target_sample).sum() # Compute the Tversky index for each sample tversky_index = (true_positives + smooth) / (true_positives + self.alpha * false_positives + self.beta * false_negatives + smooth) tversky_loss_values.append(1 - tversky_index) # Convert list of Tversky loss values to a tensor tversky_loss_values = torch.stack(tversky_loss_values) # If you want the average loss over the batch to be returned if self.size_average: return tversky_loss_values.mean() else: # If you want individual losses for each sample in the batch return tversky_loss_values class CustomDiceLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(CustomDiceLoss, self).__init__() self.size_average = size_average def forward(self, inputs, targets, smooth=1): # If your model contains a sigmoid or equivalent activation layer, comment this line #inputs = F.sigmoid(inputs) # Check if the input tensors are of expected shape if inputs.shape != targets.shape: raise ValueError("Shape mismatch: inputs and targets must have the same shape") # Compute Dice loss for each sample in the batch dice_loss_values = [] for input_sample, target_sample in zip(inputs, targets): # Flatten tensors for each sample input_sample = input_sample.view(-1) target_sample = target_sample.view(-1) intersection = (input_sample * target_sample).sum() dice = (2. * intersection + smooth) / (input_sample.sum() + target_sample.sum() + smooth) dice_loss_values.append(1 - dice) # Convert list of Dice loss values to a tensor dice_loss_values = torch.stack(dice_loss_values) # If you want the average loss over the batch to be returned if self.size_average: return dice_loss_values.mean() else: # If you want individual losses for each sample in the batch return dice_loss_values def smooth_heaviside(phi, alpha, epsilon): # Scale and shift phi for the sigmoid function scaled_phi = (phi - alpha) / epsilon # Apply the sigmoid function H = torch.sigmoid(scaled_phi) return H def calc_Phi(variable, LSgrid): device = variable.device # Get the device of the variable x0 = variable[0] y0 = variable[1] L = variable[2] t = variable[3] # Constant thickness angle = variable[4] # Rotation st = torch.sin(angle) ct = torch.cos(angle) x1 = ct * (LSgrid[0][:, None].to(device) - x0) + st * (LSgrid[1][:, None].to(device) - y0) y1 = -st * (LSgrid[0][:, None].to(device) - x0) + ct * (LSgrid[1][:, None].to(device) - y0) # Regularized hyperellipse equation a = L / 2 # Semi-major axis b = t / 2 # Constant semi-minor axis small_constant = 1e-9 # To avoid division by zero temp = ((x1 / (a + small_constant))**6) + ((y1 / (b + small_constant))**6) # # Ensuring the hyperellipse shape allPhi = 1 - (temp + small_constant)**(1/6) # # Call Heaviside function with allPhi alpha = torch.tensor(0.0, device=device, dtype=torch.float32) epsilon = torch.tensor(0.001, device=device, dtype=torch.float32) H_phi = smooth_heaviside(allPhi, alpha, epsilon) return allPhi, H_phi # utils.py import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt from matplotlib.colors import TwoSlopeNorm def preprocess_image(image_path, threshold_value=0.9, upscale=False, upscale_factor=2.0): image = Image.open(image_path).convert('L') image = image.point(lambda x: 255 if x > threshold_value * 255 else 0, '1') if upscale: image = image.resize( (int(image.width * upscale_factor), int(image.height * upscale_factor)), resample=Image.BICUBIC ) return image def run_model(model, image, conf=0.05, iou=0.5, imgsz=640): results = model(image, conf=conf, iou=iou, imgsz=imgsz) return results def save_results(results, filename='results.jpg'): for r in results: im_array = r.plot(boxes=True, labels=False, line_width=1) im = Image.fromarray(im_array[..., ::-1]) im.save(filename) def process_results(results, input_image): diceloss = CustomDiceLoss() tverskyloss = CustomTverskyLoss() prediction_tensor = results[0].regression_preds.to('cpu').detach() input_image_array = np.array(input_image.convert('L')) input_image_array_tensor = torch.tensor(input_image_array) / 255.0 input_image_array_tensor = 1.0 - input_image_array_tensor input_image_array_tensor = torch.flip(input_image_array_tensor, [0]) for r in results: im_array = r.plot(boxes=True, labels=False, line_width=1) seg_result = Image.fromarray(im_array[..., ::-1]) DH = input_image_array.shape[0] / min(input_image_array.shape[1], input_image_array.shape[0]) DW = input_image_array.shape[1] / min(input_image_array.shape[1], input_image_array.shape[0]) nelx = input_image_array.shape[1] - 1 nely = input_image_array.shape[0] - 1 x, y = torch.meshgrid(torch.linspace(0, DW, nelx+1), torch.linspace(0, DH, nely+1)) LSgrid = torch.stack((x.flatten(), y.flatten()), dim=0) pred_bboxes = results[0].boxes.xyxyn.to('cpu').detach() constant_tensor_02 = torch.full((pred_bboxes.shape[0],), 0.2) constant_tensor_00 = torch.full((pred_bboxes.shape[0],), 0.001) xmax = torch.stack([pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), pred_bboxes[:,2]*(DW*1.0), pred_bboxes[:,3]*(DH*1.0), constant_tensor_02], dim=1) xmin = torch.stack([pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), pred_bboxes[:,0]*(DW*1.0), pred_bboxes[:,1]*(DH*1.0), constant_tensor_00], dim=1) unnormalized_preds = prediction_tensor * (xmax - xmin) + xmin x_center = (unnormalized_preds[:, 0] + unnormalized_preds[:, 2]) / 2 y_center = (unnormalized_preds[:, 1] + unnormalized_preds[:, 3]) / 2 L = torch.sqrt((unnormalized_preds[:, 0] - unnormalized_preds[:, 2])**2 + (unnormalized_preds[:, 1] - unnormalized_preds[:, 3])**2) L = L + 1e-4 t_1 = unnormalized_preds[:, 4] epsilon = 1e-10 y_diff = unnormalized_preds[:, 3] - unnormalized_preds[:, 1] + epsilon x_diff = unnormalized_preds[:, 2] - unnormalized_preds[:, 0] + epsilon theta = torch.atan2(y_diff, x_diff) formatted_variables = torch.cat((x_center.unsqueeze(1), y_center.unsqueeze(1), L.unsqueeze(1), t_1.unsqueeze(1), theta.unsqueeze(1)), dim=1) pred_Phi, pred_H = calc_Phi(formatted_variables.T, LSgrid) sum_pred_H = torch.sum(pred_H.detach().cpu(), dim=1) sum_pred_H[sum_pred_H > 1] = 1 final_H = np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F')) dice_loss = diceloss(torch.tensor(final_H.copy()), input_image_array_tensor) tversky_loss = tverskyloss(torch.tensor(final_H.copy()), input_image_array_tensor) return input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss def plot_results(input_image_array_tensor, seg_result, pred_Phi, sum_pred_H, final_H, dice_loss, tversky_loss, filename='combined_plots.png'): nelx = input_image_array_tensor.shape[1] - 1 nely = input_image_array_tensor.shape[0] - 1 fig, axes = plt.subplots(2, 2, figsize=(8, 8)) axes[0, 0].imshow(input_image_array_tensor.squeeze(), origin='lower', cmap='gray_r') axes[0, 0].set_title('Input Image') axes[0, 0].axis('on') axes[0, 1].imshow(seg_result) axes[0, 1].set_title('Segmentation Result') axes[0, 1].axis('off') render_colors1 = ['yellow', 'g', 'r', 'c', 'm', 'y', 'black', 'orange', 'pink', 'cyan', 'slategrey', 'wheat', 'purple', 'mediumturquoise', 'darkviolet', 'orangered'] for i, color in zip(range(0, pred_Phi.shape[1]), render_colors1*100): axes[1, 1].contourf(np.flipud(pred_Phi[:, i].numpy().reshape((nely+1, nelx+1), order='F')), [0, 1], colors=color) axes[1, 1].set_title('Prediction contours') axes[1, 1].set_aspect('equal') axes[1, 0].imshow(np.flipud(sum_pred_H.detach().numpy().reshape((nely+1, nelx+1), order='F')), origin='lower', cmap='gray_r') axes[1, 0].set_title('Prediction Projection') plt.subplots_adjust(hspace=0.3, wspace=0.01) plt.figtext(0.5, 0.05, f'Dice Loss: {dice_loss.item():.4f}', ha='center', fontsize=16) fig.savefig(filename, dpi=600)