import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed") model = VisionEncoderDecoderModel.from_pretrained("tomofi/trocr-captcha") # load image examples urls = [ 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png', 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png', 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png', 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png', 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png', 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png' ] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") def process_image(image): # prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "TrOCR for Captcha" description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds." article = "

TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo

" examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]] #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Textbox(), title=title, description=description, article=article, examples=examples) iface.launch(debug=True)