/*! * Copyright (c) 2017 Microsoft * Licensed under The MIT License [see LICENSE for details] * \file deformable_psroi_pooling.cu * \brief * \author Yi Li, Guodong Zhang, Jifeng Dai */ /***************** Adapted by Charles Shang *********************/ // modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/cuda/deform_psroi_pooling_cuda.cu #include #include #include #include #include using namespace at; #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) const int CUDA_NUM_THREADS = 1024; inline int GET_BLOCKS(const int N) { return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS; } template __device__ scalar_t bilinear_interp( const scalar_t *data, const scalar_t x, const scalar_t y, const int width, const int height) { int x1 = floor(x); int x2 = ceil(x); int y1 = floor(y); int y2 = ceil(y); scalar_t dist_x = (scalar_t)(x - x1); scalar_t dist_y = (scalar_t)(y - y1); scalar_t value11 = data[y1 * width + x1]; scalar_t value12 = data[y2 * width + x1]; scalar_t value21 = data[y1 * width + x2]; scalar_t value22 = data[y2 * width + x2]; scalar_t value = (1 - dist_x) * (1 - dist_y) * value11 + (1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 + dist_x * dist_y * value22; return value; } template __global__ void DeformablePSROIPoolForwardKernel( const int count, const scalar_t *bottom_data, const scalar_t spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const scalar_t *bottom_rois, const scalar_t *bottom_trans, const int no_trans, const scalar_t trans_std, const int sample_per_part, const int output_dim, const int group_size, const int part_size, const int num_classes, const int channels_each_class, scalar_t *top_data, scalar_t *top_count) { CUDA_KERNEL_LOOP(index, count) { // The output is in order (n, ctop, ph, pw) int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int ctop = (index / pooled_width / pooled_height) % output_dim; int n = index / pooled_width / pooled_height / output_dim; // [start, end) interval for spatial sampling const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; // Force too small ROIs to be 1x1 scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); // Compute w and h at bottom scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); int part_h = floor((scalar_t)(ph) / pooled_height * part_size); int part_w = floor((scalar_t)(pw) / pooled_width * part_size); int class_id = ctop / channels_each_class; scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; wstart += trans_x * roi_width; scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; hstart += trans_y * roi_height; scalar_t sum = 0; int count = 0; int gw = floor((scalar_t)(pw)*group_size / pooled_width); int gh = floor((scalar_t)(ph)*group_size / pooled_height); gw = min(max(gw, 0), group_size - 1); gh = min(max(gh, 0), group_size - 1); const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width; for (int ih = 0; ih < sample_per_part; ih++) { for (int iw = 0; iw < sample_per_part; iw++) { scalar_t w = wstart + iw * sub_bin_size_w; scalar_t h = hstart + ih * sub_bin_size_h; // bilinear interpolation if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) { continue; } w = min(max(w, 0.), width - 1.); h = min(max(h, 0.), height - 1.); int c = (ctop * group_size + gh) * group_size + gw; scalar_t val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height); sum += val; count++; } } top_data[index] = count == 0 ? (scalar_t)(0) : sum / count; top_count[index] = count; } } template __global__ void DeformablePSROIPoolBackwardAccKernel( const int count, const scalar_t *top_diff, const scalar_t *top_count, const int num_rois, const scalar_t spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int output_dim, scalar_t *bottom_data_diff, scalar_t *bottom_trans_diff, const scalar_t *bottom_data, const scalar_t *bottom_rois, const scalar_t *bottom_trans, const int no_trans, const scalar_t trans_std, const int sample_per_part, const int group_size, const int part_size, const int num_classes, const int channels_each_class) { CUDA_KERNEL_LOOP(index, count) { // The output is in order (n, ctop, ph, pw) int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int ctop = (index / pooled_width / pooled_height) % output_dim; int n = index / pooled_width / pooled_height / output_dim; // [start, end) interval for spatial sampling const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5; scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5; scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5; scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5; // Force too small ROIs to be 1x1 scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0 scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1); // Compute w and h at bottom scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height); scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width); scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part); scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part); int part_h = floor((scalar_t)(ph) / pooled_height * part_size); int part_w = floor((scalar_t)(pw) / pooled_width * part_size); int class_id = ctop / channels_each_class; scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std; scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w; wstart += trans_x * roi_width; scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h; hstart += trans_y * roi_height; if (top_count[index] <= 0) { continue; } scalar_t diff_val = top_diff[index] / top_count[index]; const scalar_t *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width; scalar_t *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width; int gw = floor((scalar_t)(pw)*group_size / pooled_width); int gh = floor((scalar_t)(ph)*group_size / pooled_height); gw = min(max(gw, 0), group_size - 1); gh = min(max(gh, 0), group_size - 1); for (int ih = 0; ih < sample_per_part; ih++) { for (int iw = 0; iw < sample_per_part; iw++) { scalar_t w = wstart + iw * sub_bin_size_w; scalar_t h = hstart + ih * sub_bin_size_h; // bilinear interpolation if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5) { continue; } w = min(max(w, 0.), width - 1.); h = min(max(h, 0.), height - 1.); int c = (ctop * group_size + gh) * group_size + gw; // backward on feature int x0 = floor(w); int x1 = ceil(w); int y0 = floor(h); int y1 = ceil(h); scalar_t dist_x = w - x0, dist_y = h - y0; scalar_t q00 = (1 - dist_x) * (1 - dist_y); scalar_t q01 = (1 - dist_x) * dist_y; scalar_t q10 = dist_x * (1 - dist_y); scalar_t q11 = dist_x * dist_y; int bottom_index_base = c * height * width; atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val); atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val); if (no_trans) { continue; } scalar_t U00 = offset_bottom_data[bottom_index_base + y0 * width + x0]; scalar_t U01 = offset_bottom_data[bottom_index_base + y1 * width + x0]; scalar_t U10 = offset_bottom_data[bottom_index_base + y0 * width + x1]; scalar_t U11 = offset_bottom_data[bottom_index_base + y1 * width + x1]; scalar_t diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val; diff_x *= roi_width; scalar_t diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val; diff_y *= roi_height; atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x); atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y); } } } } void DeformablePSROIPoolForward(const at::Tensor data, const at::Tensor bbox, const at::Tensor trans, at::Tensor out, at::Tensor top_count, const int batch, const int channels, const int height, const int width, const int num_bbox, const int channels_trans, const int no_trans, const float spatial_scale, const int output_dim, const int group_size, const int pooled_size, const int part_size, const int sample_per_part, const float trans_std) { const int pooled_height = pooled_size; const int pooled_width = pooled_size; const int count = num_bbox * output_dim * pooled_height * pooled_width; const int num_classes = no_trans ? 1 : channels_trans / 2; const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; AT_DISPATCH_FLOATING_TYPES_AND_HALF( data.type(), "deformable_psroi_pool_forward", ([&] { const scalar_t *bottom_data = data.data(); const scalar_t *bottom_rois = bbox.data(); const scalar_t *bottom_trans = no_trans ? NULL : trans.data(); scalar_t *top_data = out.data(); scalar_t *top_count_data = top_count.data(); DeformablePSROIPoolForwardKernel<<>>( count, bottom_data, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, output_dim, group_size, part_size, num_classes, channels_each_class, top_data, top_count_data); })); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); } } void DeformablePSROIPoolBackwardAcc(const at::Tensor out_grad, const at::Tensor data, const at::Tensor bbox, const at::Tensor trans, const at::Tensor top_count, at::Tensor in_grad, at::Tensor trans_grad, const int batch, const int channels, const int height, const int width, const int num_bbox, const int channels_trans, const int no_trans, const float spatial_scale, const int output_dim, const int group_size, const int pooled_size, const int part_size, const int sample_per_part, const float trans_std) { // LOG(INFO) << "DeformablePSROIPoolBackward"; const int num_rois = num_bbox; const int pooled_height = pooled_size; const int pooled_width = pooled_size; const int count = num_bbox * output_dim * pooled_height * pooled_width; const int num_classes = no_trans ? 1 : channels_trans / 2; const int channels_each_class = no_trans ? output_dim : output_dim / num_classes; AT_DISPATCH_FLOATING_TYPES_AND_HALF( out_grad.type(), "deformable_psroi_pool_backward_acc", ([&] { const scalar_t *top_diff = out_grad.data(); const scalar_t *bottom_data = data.data(); const scalar_t *bottom_rois = bbox.data(); const scalar_t *bottom_trans = no_trans ? NULL : trans.data(); scalar_t *bottom_data_diff = in_grad.data(); scalar_t *bottom_trans_diff = no_trans ? NULL : trans_grad.data(); const scalar_t *top_count_data = top_count.data(); DeformablePSROIPoolBackwardAccKernel<<>>( count, top_diff, top_count_data, num_rois, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width, output_dim, bottom_data_diff, bottom_trans_diff, bottom_data, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, group_size, part_size, num_classes, channels_each_class); })); cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err)); } }