from smolagents import Tool from transformers import CLIPProcessor, CLIPModel, DetrForObjectDetection, DetrImageProcessor from PIL import Image import torch class ChessBoardRecognitionTool(Tool): name = "chess_board_recognition" description = "Recognizes the state of a chess board from an image and returns the position representation." inputs = { "image_path": { "type": "string", "description": "The path of the image file to elaborate" } } output_type = "string" def __init__(self): super().__init__() self.model_name = "aesat/detr-finetuned-chess" self.model = DetrForObjectDetection.from_pretrained(self.model_name) self.processor = DetrImageProcessor.from_pretrained(self.model_name) def forward(self, image_path: str) -> str: try: image = Image.open(image_path).convert("RGB") inputs = self.processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = self.processor.post_process_object_detection( outputs, target_sizes=target_sizes, threshold=0.9 )[0] result_str = "Chess board description:\n" for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] result_str += f"Label: {label}, Confidence: {round(score.item(), 3)}, Box: {box}\n" return result_str except Exception as e: return f"Error chess_board_recognition is not working properly, error: {e}, please skip this tool"