import os import gradio as gr import requests import inspect import pandas as pd from dotenv import load_dotenv from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, InferenceClientModel, Tool, tool, VisitWebpageTool # Load environment variables load_dotenv() # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Custom Tools for GAIA Dataset --- @tool def calculate_math(expression: str) -> str: """ Calculates mathematical expressions safely. Args: expression: Mathematical expression to evaluate (e.g., "2 + 2", "sqrt(16)") """ try: import math import re # Replace common math functions expression = expression.replace("sqrt", "math.sqrt") expression = expression.replace("log", "math.log") expression = expression.replace("sin", "math.sin") expression = expression.replace("cos", "math.cos") expression = expression.replace("tan", "math.tan") expression = expression.replace("pi", "math.pi") expression = expression.replace("e", "math.e") # Safe evaluation allowed_names = { k: v for k, v in math.__dict__.items() if not k.startswith("__") } allowed_names.update({"abs": abs, "round": round, "min": min, "max": max}) result = eval(expression, {"__builtins__": {}}, allowed_names) return str(result) except Exception as e: return f"Error calculating: {str(e)}" @tool def analyze_data(data_description: str) -> str: """ Analyzes data patterns, statistics, or trends described in text. Args: data_description: Description of data to analyze """ # This is a simplified analysis tool # In a real scenario, this could connect to data analysis libraries return f"Data analysis for: {data_description}. Please provide specific data or use web search for current statistics." @tool def fact_checker(claim: str) -> str: """ Helps verify factual claims by suggesting verification approaches. Args: claim: The factual claim to verify """ return f"To verify '{claim}', I recommend using web search for recent, authoritative sources. Cross-reference multiple reliable sources." class AdvancedReasoningTool(Tool): name = "advanced_reasoning" description = """ This tool helps break down complex multi-step reasoning problems. It provides structured thinking for complex questions.""" inputs = { "problem": { "type": "string", "description": "A complex problem that requires step-by-step reasoning", }, "problem_type": { "type": "string", "description": "Type of problem (e.g., 'logical', 'mathematical', 'analytical', 'research')", "nullable": True } } output_type = "string" def forward(self, problem: str, problem_type: str = None): if problem_type is None: problem_type = "general" reasoning_frameworks = { "logical": "1. Identify premises\n2. Apply logical rules\n3. Check for contradictions\n4. Draw conclusions", "mathematical": "1. Understand what's being asked\n2. Identify known values\n3. Choose appropriate formulas\n4. Calculate step-by-step\n5. Verify the answer", "analytical": "1. Break down into components\n2. Analyze each part\n3. Look for patterns/relationships\n4. Synthesize findings", "research": "1. Define research question\n2. Identify reliable sources\n3. Gather information\n4. Cross-reference facts\n5. Form conclusion" } framework = reasoning_frameworks.get(problem_type.lower(), reasoning_frameworks["analytical"]) return f"Problem: {problem}\n\nSuggested approach ({problem_type}):\n{framework}" class BasicAgent: def __init__(self): print("๐Ÿค– BasicAgent initialized with smolagents framework.") # Get HF token from environment hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN") if not hf_token: raise ValueError("โŒ No HF token found. Please set HF_TOKEN or HUGGINGFACE_HUB_TOKEN in your .env file\n" "You can get a token from: https://huggingface.co/settings/tokens") try: # Initialize model with HF token model = InferenceClientModel( model_id="HuggingFaceTB/SmolLM3-3B", token=hf_token ) # Create agent with comprehensive tools self.agent = CodeAgent( tools=[ DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_math, analyze_data, fact_checker, AdvancedReasoningTool(), FinalAnswerTool() ], model=model, max_steps=15, # Increased for complex GAIA questions verbosity_level=2 ) print("โœ… SmolAgent initialized successfully with all tools") except Exception as e: print(f"โŒ Error initializing SmolAgent: {e}") raise e def __call__(self, question: str) -> str: print(f"๐Ÿค– SmolAgent received question: {question[:100]}...") try: print("๐Ÿ”„ Running SmolAgent with tools...") # Add context to help the agent understand it should provide a final answer enhanced_question = f""" Please answer the following question thoroughly and accurately. Use the available tools to search for information, visit websites, perform calculations, or analyze data as needed. Question: {question} Please provide a clear, specific final answer at the end. """ result = self.agent.run(enhanced_question) print("โœ… SmolAgent completed successfully!") # Extract the final answer if it's wrapped in agent output if hasattr(result, 'content'): answer = result.content elif isinstance(result, dict) and 'output' in result: answer = result['output'] else: answer = str(result) print(f"๐Ÿ“ SmolAgent returning answer: {answer[:200]}...") # Ensure we have a meaningful answer if not answer or answer.lower().strip() == "": return "I apologize, but I couldn't generate a proper response to your question." return answer except Exception as e: error_msg = f"โŒ SmolAgent Error: {str(e)}" print(error_msg) print(f"๐Ÿ“‹ Full error details: {repr(e)}") return f"Sorry, I encountered an error while processing your question: {str(e)}" def test_connection(self): """Test if the agent is working properly""" try: test_response = self("What is the capital of France?") print(f"๐Ÿงช Test response: {test_response}") return True, test_response except Exception as e: print(f"๐Ÿšซ Test failed: {e}") return False, str(e) def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Generate agent code URL if space_id: agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" else: agent_code = "https://huggingface.co/spaces/your-username/your-space/tree/main" print(f"Agent code URL: {agent_code}") # 1. Instantiate Agent try: print("๐Ÿš€ Initializing SmolAgent...") agent = BasicAgent() # Test the agent before proceeding print("๐Ÿงช Testing agent connection...") test_success, test_result = agent.test_connection() if not test_success: return f"โŒ Agent test failed: {test_result}\nPlease check your HF_TOKEN in environment variables.", None print(f"โœ… Agent test successful: {test_result[:100]}...") except Exception as e: error_msg = f"โŒ Error initializing agent: {e}" print(error_msg) return error_msg, None # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running SmolAgent on {len(questions_data)} questions...") for i, item in enumerate(questions_data): task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue print(f"๐Ÿ”„ Processing question {i+1}/{len(questions_data)}: {task_id}") try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": submitted_answer[:300] + "..." if len(submitted_answer) > 300 else submitted_answer }) print(f"โœ… Completed question {i+1}") except Exception as e: error_msg = f"AGENT ERROR: {e}" print(f"โŒ Error running agent on task {task_id}: {e}") answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": error_msg }) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } status_update = f"SmolAgent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# ๐Ÿค– SmolAgent GAIA Evaluation Runner") gr.Markdown( """ **Enhanced Agent for GAIA Dataset:** ๐Ÿ› ๏ธ **Tools Available:** - ๐Ÿ” **DuckDuckGoSearchTool**: Real-time web search capabilities - ๐ŸŒ **VisitWebpageTool**: Can visit and analyze web pages - ๐Ÿงฎ **Math Calculator**: Safe mathematical calculations - ๐Ÿ“Š **Data Analysis**: Basic data analysis capabilities - โœ… **Fact Checker**: Helps verify claims with authoritative sources - ๐Ÿง  **Advanced Reasoning**: Structured problem-solving approach ๐ŸŽฏ **GAIA Format Compliance:** - Numbers without commas or units (unless specified) - Strings without articles or abbreviations - Proper comma-separated lists - Extracts only the final answer for submission **Instructions:** 1. Log in to your Hugging Face account using the button below. 2. Click 'Run Evaluation & Submit All Answers' to start the evaluation. 3. The agent will process all questions using multiple tools and reasoning steps. --- **Note:** This agent follows GAIA's strict answer formatting requirements and uses advanced reasoning with multiple tools. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " SmolAgent Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"โœ… SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("โ„น๏ธ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"โœ… SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("โ„น๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" SmolAgent Starting ")) + "\n") print("Launching Gradio Interface for SmolAgent GAIA Evaluation...") demo.launch(debug=True, share=False)