import gradio as gr from lb_info import load_results, BUILD_L1_DF from desc import ( LEADERBOARD_INTRODUCTION, LEADERBOARD_MD, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, CINEPILE_ABOUT_MD, ) from urllib.request import urlopen import markdown def filter_df(fields): # Use set operations to avoid duplicates headers = ( [ "Model", "Params (B)", "Average Accuracy", ] + fields + [ "Average Rank", ] ) # Remove duplicates in headers by keeping the earliest entry headers = list(dict.fromkeys(headers)) return table[headers] with gr.Blocks(theme=gr.themes.Soft()) as demo: struct = load_results() results = struct # Build leaderboard DataFrame for CinePile data table, check_box = BUILD_L1_DF(results) N_MODELS = len(table) UP_TS = "20th October 2024" # Replace with actual timestamp gr.Markdown(LEADERBOARD_INTRODUCTION.format(N_MODELS, UP_TS)) with gr.Tabs(elem_classes="tab-buttons") as tabs: # First Tab: CinePile Leaderboard with gr.TabItem("CinePile Leaderboard", elem_id="main"): gr.Markdown(LEADERBOARD_MD) # Checkbox for selecting question categories checkbox_group = gr.CheckboxGroup( choices=check_box["question_categories"], label="Question Categories", interactive=True, ) # DataFrame component for displaying the leaderboard data_component = gr.DataFrame( value=table[check_box["essential"]], datatype=[check_box["type_map"][x] for x in check_box["essential"]], interactive=False, visible=True, ) # Update the table when checkbox changes checkbox_group.change( fn=filter_df, inputs=checkbox_group, outputs=data_component ) # Second Tab: About with gr.TabItem("About CinePile", elem_id="about"): markdown_content = urlopen(CINEPILE_ABOUT_MD).read().decode() gr.HTML(markdown.markdown(markdown_content)) # Add citation support under "About" with gr.Row(): with gr.Accordion("Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", ) demo.launch()