#### Import Dependencies #### import gradio as gr import transformers from transformers import pipeline from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch #### Model 1 #### model_name = "snrspeaks/t5-one-line-summary" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) #### Model 2 #### summarizer = pipeline( "summarization", "pszemraj/long-t5-tglobal-base-16384-book-summary", device=0 if torch.cuda.is_available() else -1, ) params = { "max_length": 256, "min_length": 8, "no_repeat_ngram_size": 3, "early_stopping": True, "repetition_penalty": 3.5, "length_penalty": 0.3, "encoder_no_repeat_ngram_size": 3, "num_beams": 4, } # parameters for text generation out of model #### Run the model 1#### def summarize(text): input_ids = tokenizer.encode("summarize: " + text, return_tensors="pt", add_special_tokens=True) generated_id = model.generate(input_ids=input_ids,num_beams=5,max_length=50,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=1) pred = tokenizer.decode(generated_id[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) result = summarizer(text, **params) pred2 = result[0]['summary_text'] return pred, pred2 #### Display summarized text #### with gr.Blocks() as demo: text = gr.Textbox(label="Text", lines=10, placeholder="Enter text here") t1 = gr.Textbox(label="Output") t2 = gr.Textbox(label="Output2") btn = gr.Button("Summarise") btn.click(fn=summarize, inputs=text, outputs=[t1,t2]) demo.launch()