import torch import numpy as np def append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions. From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') return x[(...,) + (None,) * dims_to_append] def renorm_thresholding(x0, value): # renorm pred_max = x0.max() pred_min = x0.min() pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1 pred_x0 = 2 * pred_x0 - 1. # -1 ... 1 s = torch.quantile( rearrange(pred_x0, 'b ... -> b (...)').abs(), value, dim=-1 ) s.clamp_(min=1.0) s = s.view(-1, *((1,) * (pred_x0.ndim - 1))) # clip by threshold # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max # temporary hack: numpy on cpu pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy() pred_x0 = torch.tensor(pred_x0).to(self.model.device) # re.renorm pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1 pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range return pred_x0 def norm_thresholding(x0, value): s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) return x0 * (value / s) def spatial_norm_thresholding(x0, value): # b c h w s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) return x0 * (value / s)