#os.system("git clone https://github.com/R3gm/SoniTranslate") # pip install -r requirements.txt import numpy as np import gradio as gr import whisperx import torch from gtts import gTTS import librosa import edge_tts import asyncio import gc from pydub import AudioSegment from tqdm import tqdm from deep_translator import GoogleTranslator import os from soni_translate.audio_segments import create_translated_audio from soni_translate.text_to_speech import make_voice_gradio from soni_translate.translate_segments import translate_text #from soni_translate import test title = "
📽️ SoniTranslate 🈷️
" news = """ ## 📖 News 🔥 2023/07/01: Support (Thanks for [text](https://github.com)). """ description = """ ## Translate the audio of a video content from one language to another while preserving synchronization. This is a demo on Github project 📽️ [SoniTranslate](https://github.com/R3gm/SoniTranslate). 📼 You can upload a video or provide a video link. The generation is **limited to 10 seconds** to prevent errors with the queue in cpu. If you use a GPU, you won't have any of these limitations. 🚀 For **translate a video of any duration** and faster results, you can use the Colab notebook with GPU. [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb) """ tutorial = """ # 🔰 Instructions for use. 1. Upload a video on the first tab or use a video link on the second tab. 2. Choose the language in which you want to translate the video. 3. Specify the number of people speaking in the video and assign each one a text-to-speech voice suitable for the translation language. 4. Press the 'Translate' button to obtain the results. """ if not os.path.exists('audio'): os.makedirs('audio') if not os.path.exists('audio2/audio'): os.makedirs('audio2/audio') # Check GPU if torch.cuda.is_available(): device = "cuda" list_compute_type = ['float16', 'float32'] compute_type_default = 'float16' whisper_model_default = 'large-v1' else: device = "cpu" list_compute_type = ['float32'] compute_type_default = 'float32' whisper_model_default = 'base' print('Working in: ', device) # Download an audio #url = "https://www.youtube.com/watch?v=Rdi-SNhe2v4" ### INIT list_tts = ['af-ZA-AdriNeural-Female', 'af-ZA-WillemNeural-Male', 'am-ET-AmehaNeural-Male', 'am-ET-MekdesNeural-Female', 'ar-AE-FatimaNeural-Female', 'ar-AE-HamdanNeural-Male', 'ar-BH-AliNeural-Male', 'ar-BH-LailaNeural-Female', 'ar-DZ-AminaNeural-Female', 'ar-DZ-IsmaelNeural-Male', 'ar-EG-SalmaNeural-Female', 'ar-EG-ShakirNeural-Male', 'ar-IQ-BasselNeural-Male', 'ar-IQ-RanaNeural-Female', 'ar-JO-SanaNeural-Female', 'ar-JO-TaimNeural-Male', 'ar-KW-FahedNeural-Male', 'ar-KW-NouraNeural-Female', 'ar-LB-LaylaNeural-Female', 'ar-LB-RamiNeural-Male', 'ar-LY-ImanNeural-Female', 'ar-LY-OmarNeural-Male', 'ar-MA-JamalNeural-Male', 'ar-MA-MounaNeural-Female', 'ar-OM-AbdullahNeural-Male', 'ar-OM-AyshaNeural-Female', 'ar-QA-AmalNeural-Female', 'ar-QA-MoazNeural-Male', 'ar-SA-HamedNeural-Male', 'ar-SA-ZariyahNeural-Female', 'ar-SY-AmanyNeural-Female', 'ar-SY-LaithNeural-Male', 'ar-TN-HediNeural-Male', 'ar-TN-ReemNeural-Female', 'ar-YE-MaryamNeural-Female', 'ar-YE-SalehNeural-Male', 'az-AZ-BabekNeural-Male', 'az-AZ-BanuNeural-Female', 'bg-BG-BorislavNeural-Male', 'bg-BG-KalinaNeural-Female', 'bn-BD-NabanitaNeural-Female', 'bn-BD-PradeepNeural-Male', 'bn-IN-BashkarNeural-Male', 'bn-IN-TanishaaNeural-Female', 'bs-BA-GoranNeural-Male', 'bs-BA-VesnaNeural-Female', 'ca-ES-EnricNeural-Male', 'ca-ES-JoanaNeural-Female', 'cs-CZ-AntoninNeural-Male', 'cs-CZ-VlastaNeural-Female', 'cy-GB-AledNeural-Male', 'cy-GB-NiaNeural-Female', 'da-DK-ChristelNeural-Female', 'da-DK-JeppeNeural-Male', 'de-AT-IngridNeural-Female', 'de-AT-JonasNeural-Male', 'de-CH-JanNeural-Male', 'de-CH-LeniNeural-Female', 'de-DE-AmalaNeural-Female', 'de-DE-ConradNeural-Male', 'de-DE-KatjaNeural-Female', 'de-DE-KillianNeural-Male', 'el-GR-AthinaNeural-Female', 'el-GR-NestorasNeural-Male', 'en-AU-NatashaNeural-Female', 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-CA-LiamNeural-Male', 'en-GB-LibbyNeural-Female', 'en-GB-MaisieNeural-Female', 'en-GB-RyanNeural-Male', 'en-GB-SoniaNeural-Female', 'en-GB-ThomasNeural-Male', 'en-HK-SamNeural-Male', 'en-HK-YanNeural-Female', 'en-IE-ConnorNeural-Male', 'en-IE-EmilyNeural-Female', 'en-IN-NeerjaExpressiveNeural-Female', 'en-IN-NeerjaNeural-Female', 'en-IN-PrabhatNeural-Male', 'en-KE-AsiliaNeural-Female', 'en-KE-ChilembaNeural-Male', 'en-NG-AbeoNeural-Male', 'en-NG-EzinneNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-NZ-MollyNeural-Female', 'en-PH-JamesNeural-Male', 'en-PH-RosaNeural-Female', 'en-SG-LunaNeural-Female', 'en-SG-WayneNeural-Male', 'en-TZ-ElimuNeural-Male', 'en-TZ-ImaniNeural-Female', 'en-US-AnaNeural-Female', 'en-US-AriaNeural-Female', 'en-US-ChristopherNeural-Male', 'en-US-EricNeural-Male', 'en-US-GuyNeural-Male', 'en-US-JennyNeural-Female', 'en-US-MichelleNeural-Female', 'en-US-RogerNeural-Male', 'en-US-SteffanNeural-Male', 'en-ZA-LeahNeural-Female', 'en-ZA-LukeNeural-Male', 'es-AR-ElenaNeural-Female', 'es-AR-TomasNeural-Male', 'es-BO-MarceloNeural-Male', 'es-BO-SofiaNeural-Female', 'es-CL-CatalinaNeural-Female', 'es-CL-LorenzoNeural-Male', 'es-CO-GonzaloNeural-Male', 'es-CO-SalomeNeural-Female', 'es-CR-JuanNeural-Male', 'es-CR-MariaNeural-Female', 'es-CU-BelkysNeural-Female', 'es-CU-ManuelNeural-Male', 'es-DO-EmilioNeural-Male', 'es-DO-RamonaNeural-Female', 'es-EC-AndreaNeural-Female', 'es-EC-LuisNeural-Male', 'es-ES-AlvaroNeural-Male', 'es-ES-ElviraNeural-Female', 'es-GQ-JavierNeural-Male', 'es-GQ-TeresaNeural-Female', 'es-GT-AndresNeural-Male', 'es-GT-MartaNeural-Female', 'es-HN-CarlosNeural-Male', 'es-HN-KarlaNeural-Female', 'es-MX-DaliaNeural-Female', 'es-MX-JorgeNeural-Male', 'es-NI-FedericoNeural-Male', 'es-NI-YolandaNeural-Female', 'es-PA-MargaritaNeural-Female', 'es-PA-RobertoNeural-Male', 'es-PE-AlexNeural-Male', 'es-PE-CamilaNeural-Female', 'es-PR-KarinaNeural-Female', 'es-PR-VictorNeural-Male', 'es-PY-MarioNeural-Male', 'es-PY-TaniaNeural-Female', 'es-SV-LorenaNeural-Female', 'es-SV-RodrigoNeural-Male', 'es-US-AlonsoNeural-Male', 'es-US-PalomaNeural-Female', 'es-UY-MateoNeural-Male', 'es-UY-ValentinaNeural-Female', 'es-VE-PaolaNeural-Female', 'es-VE-SebastianNeural-Male', 'et-EE-AnuNeural-Female', 'et-EE-KertNeural-Male', 'fa-IR-DilaraNeural-Female', 'fa-IR-FaridNeural-Male', 'fi-FI-HarriNeural-Male', 'fi-FI-NooraNeural-Female', 'fil-PH-AngeloNeural-Male', 'fil-PH-BlessicaNeural-Female', 'fr-BE-CharlineNeural-Female', 'fr-BE-GerardNeural-Male', 'fr-CA-AntoineNeural-Male', 'fr-CA-JeanNeural-Male', 'fr-CA-SylvieNeural-Female', 'fr-CH-ArianeNeural-Female', 'fr-CH-FabriceNeural-Male', 'fr-FR-DeniseNeural-Female', 'fr-FR-EloiseNeural-Female', 'fr-FR-HenriNeural-Male', 'ga-IE-ColmNeural-Male', 'ga-IE-OrlaNeural-Female', 'gl-ES-RoiNeural-Male', 'gl-ES-SabelaNeural-Female', 'gu-IN-DhwaniNeural-Female', 'gu-IN-NiranjanNeural-Male', 'he-IL-AvriNeural-Male', 'he-IL-HilaNeural-Female', 'hi-IN-MadhurNeural-Male', 'hi-IN-SwaraNeural-Female', 'hr-HR-GabrijelaNeural-Female', 'hr-HR-SreckoNeural-Male', 'hu-HU-NoemiNeural-Female', 'hu-HU-TamasNeural-Male', 'id-ID-ArdiNeural-Male', 'id-ID-GadisNeural-Female', 'is-IS-GudrunNeural-Female', 'is-IS-GunnarNeural-Male', 'it-IT-DiegoNeural-Male', 'it-IT-ElsaNeural-Female', 'it-IT-IsabellaNeural-Female', 'ja-JP-KeitaNeural-Male', 'ja-JP-NanamiNeural-Female', 'jv-ID-DimasNeural-Male', 'jv-ID-SitiNeural-Female', 'ka-GE-EkaNeural-Female', 'ka-GE-GiorgiNeural-Male', 'kk-KZ-AigulNeural-Female', 'kk-KZ-DauletNeural-Male', 'km-KH-PisethNeural-Male', 'km-KH-SreymomNeural-Female', 'kn-IN-GaganNeural-Male', 'kn-IN-SapnaNeural-Female', 'ko-KR-InJoonNeural-Male', 'ko-KR-SunHiNeural-Female', 'lo-LA-ChanthavongNeural-Male', 'lo-LA-KeomanyNeural-Female', 'lt-LT-LeonasNeural-Male', 'lt-LT-OnaNeural-Female', 'lv-LV-EveritaNeural-Female', 'lv-LV-NilsNeural-Male', 'mk-MK-AleksandarNeural-Male', 'mk-MK-MarijaNeural-Female', 'ml-IN-MidhunNeural-Male', 'ml-IN-SobhanaNeural-Female', 'mn-MN-BataaNeural-Male', 'mn-MN-YesuiNeural-Female', 'mr-IN-AarohiNeural-Female', 'mr-IN-ManoharNeural-Male', 'ms-MY-OsmanNeural-Male', 'ms-MY-YasminNeural-Female', 'mt-MT-GraceNeural-Female', 'mt-MT-JosephNeural-Male', 'my-MM-NilarNeural-Female', 'my-MM-ThihaNeural-Male', 'nb-NO-FinnNeural-Male', 'nb-NO-PernilleNeural-Female', 'ne-NP-HemkalaNeural-Female', 'ne-NP-SagarNeural-Male', 'nl-BE-ArnaudNeural-Male', 'nl-BE-DenaNeural-Female', 'nl-NL-ColetteNeural-Female', 'nl-NL-FennaNeural-Female', 'nl-NL-MaartenNeural-Male', 'pl-PL-MarekNeural-Male', 'pl-PL-ZofiaNeural-Female', 'ps-AF-GulNawazNeural-Male', 'ps-AF-LatifaNeural-Female', 'pt-BR-AntonioNeural-Male', 'pt-BR-FranciscaNeural-Female', 'pt-PT-DuarteNeural-Male', 'pt-PT-RaquelNeural-Female', 'ro-RO-AlinaNeural-Female', 'ro-RO-EmilNeural-Male', 'ru-RU-DmitryNeural-Male', 'ru-RU-SvetlanaNeural-Female', 'si-LK-SameeraNeural-Male', 'si-LK-ThiliniNeural-Female', 'sk-SK-LukasNeural-Male', 'sk-SK-ViktoriaNeural-Female', 'sl-SI-PetraNeural-Female', 'sl-SI-RokNeural-Male', 'so-SO-MuuseNeural-Male', 'so-SO-UbaxNeural-Female', 'sq-AL-AnilaNeural-Female', 'sq-AL-IlirNeural-Male', 'sr-RS-NicholasNeural-Male', 'sr-RS-SophieNeural-Female', 'su-ID-JajangNeural-Male', 'su-ID-TutiNeural-Female', 'sv-SE-MattiasNeural-Male', 'sv-SE-SofieNeural-Female', 'sw-KE-RafikiNeural-Male', 'sw-KE-ZuriNeural-Female', 'sw-TZ-DaudiNeural-Male', 'sw-TZ-RehemaNeural-Female', 'ta-IN-PallaviNeural-Female', 'ta-IN-ValluvarNeural-Male', 'ta-LK-KumarNeural-Male', 'ta-LK-SaranyaNeural-Female', 'ta-MY-KaniNeural-Female', 'ta-MY-SuryaNeural-Male', 'ta-SG-AnbuNeural-Male', 'ta-SG-VenbaNeural-Female', 'te-IN-MohanNeural-Male', 'te-IN-ShrutiNeural-Female', 'th-TH-NiwatNeural-Male', 'th-TH-PremwadeeNeural-Female', 'tr-TR-AhmetNeural-Male', 'tr-TR-EmelNeural-Female', 'uk-UA-OstapNeural-Male', 'uk-UA-PolinaNeural-Female', 'ur-IN-GulNeural-Female', 'ur-IN-SalmanNeural-Male', 'ur-PK-AsadNeural-Male', 'ur-PK-UzmaNeural-Female', 'uz-UZ-MadinaNeural-Female', 'uz-UZ-SardorNeural-Male', 'vi-VN-HoaiMyNeural-Female', 'vi-VN-NamMinhNeural-Male', 'zh-CN-XiaoxiaoNeural-Female', 'zh-CN-XiaoyiNeural-Female', 'zh-CN-YunjianNeural-Male', 'zh-CN-YunxiNeural-Male', 'zh-CN-YunxiaNeural-Male', 'zh-CN-YunyangNeural-Male', 'zh-CN-liaoning-XiaobeiNeural-Female', 'zh-CN-shaanxi-XiaoniNeural-Female'] def translate_from_video(video, WHISPER_MODEL_SIZE, batch_size, compute_type, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01,tts_voice02,tts_voice03,tts_voice04,tts_voice05): YOUR_HF_TOKEN = os.getenv("My_hf_token") OutputFile = 'Video.mp4' audio_wav = "audio.wav" Output_name_file = "audio_dub_solo.wav" mix_audio = "audio_mix.mp3" video_output = "diar_output.mp4" os.system(f"rm {Output_name_file}") os.system("rm Video.mp4") #os.system("rm diar_output.mp4") os.system("rm audio.wav") if os.path.exists(video): print(f"### Start Video ###") if device == 'cpu': # max 1 minute in cpu print('10 s. Limited for CPU ') os.system(f"ffmpeg -y -i {video} -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4") else: os.system(f"ffmpeg -y -i {video} -c:v libx264 -c:a aac -strict experimental Video.mp4") os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav") else: print(f"### Start {video} ###") if device == 'cpu': # max 1 minute in cpu print('10 s. Limited for CPU ') #https://github.com/yt-dlp/yt-dlp/issues/2220 mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}' wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 1 audio.wav" else: mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}' wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}' os.system(mp4_) os.system(wav_) print("Set file complete.") # 1. Transcribe with original whisper (batched) model = whisperx.load_model( WHISPER_MODEL_SIZE, device, compute_type=compute_type ) audio = whisperx.load_audio(audio_wav) result = model.transcribe(audio, batch_size=batch_size) gc.collect(); torch.cuda.empty_cache(); del model print("Transcript complete") # 2. Align whisper output model_a, metadata = whisperx.load_align_model( language_code=result["language"], device=device ) result = whisperx.align( result["segments"], model_a, metadata, audio, device, return_char_alignments=True, ) gc.collect(); torch.cuda.empty_cache(); del model_a print("Align complete") # 3. Assign speaker labels diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device) diarize_segments = diarize_model( audio_wav, min_speakers=min_speakers, max_speakers=max_speakers) result_diarize = whisperx.assign_word_speakers(diarize_segments, result) gc.collect(); torch.cuda.empty_cache(); del diarize_model print("Diarize complete") result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO) print("Translation complete") audio_files = [] # Mapping speakers to voice variables speaker_to_voice = { 'SPEAKER_00': tts_voice00, 'SPEAKER_01': tts_voice01, 'SPEAKER_02': tts_voice02, 'SPEAKER_03': tts_voice03, 'SPEAKER_04': tts_voice04, 'SPEAKER_05': tts_voice05 } for segment in result_diarize['segments']: text = segment['text'] start = segment['start'] end = segment['end'] try: speaker = segment['speaker'] except KeyError: segment['speaker'] = "SPEAKER_99" speaker = segment['speaker'] print("NO SPEAKER DETECT IN SEGMENT") # make the tts audio filename = f"audio/{start}.ogg" if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None': make_voice_gradio(text, speaker_to_voice[speaker], filename) elif speaker == "SPEAKER_99": try: tts = gTTS(text, lang=TRANSLATE_AUDIO_TO) tts.save(filename) print('Using GTTS') except: tts = gTTS('a', lang=TRANSLATE_AUDIO_TO) tts.save(filename) print('ERROR AUDIO GTTS') # duration duration_true = end - start duration_tts = librosa.get_duration(filename=filename) # porcentaje porcentaje = duration_tts / duration_true if porcentaje > 2.1: porcentaje = 2.1 elif porcentaje <= 1.2 and porcentaje >= 0.8: porcentaje = 1.0 elif porcentaje <= 0.79: porcentaje = 0.8 # Smoth and round porcentaje = round(porcentaje+0.0, 1) # apply aceleration or opposite to the audio file in audio2 folder os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}") duration_create = librosa.get_duration(filename=f"audio2/{filename}") audio_files.append(filename) # replace files with the accelerates os.system("mv -f audio2/audio/*.ogg audio/") os.system(f"rm {Output_name_file}") create_translated_audio(result_diarize, audio_files, Output_name_file) os.system("rm audio_dub_stereo.wav") os.system("ffmpeg -i audio_dub_solo.wav -ac 1 audio_dub_stereo.wav") #os.system(f"ffmpeg -i Video.mp4 -i {Output_name_file} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}") os.system(f"rm {mix_audio}") #os.system(f'''ffmpeg -i {audio_wav} -i audio_dub_stereo.wav -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}''') #os.system(f'ffmpeg -y -i {audio_wav} -i audio_dub_stereo.wav -filter_complex "[0:0][1:0] amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}') os.system(f'ffmpeg -y -i audio.wav -i audio_dub_stereo.wav -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}') os.system(f"rm {video_output}") os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}") return video_output import sys class Logger: def __init__(self, filename): self.terminal = sys.stdout self.log = open(filename, "w") def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): self.terminal.flush() self.log.flush() def isatty(self): return False sys.stdout = Logger("output.log") def read_logs(): sys.stdout.flush() with open("output.log", "r") as f: return f.read()[25:] with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown(tutorial) with gr.Tab("Translate audio from video"): with gr.Row(): with gr.Column(): video_input = gr.Video() # height=300,width=300 gr.Markdown("Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.") TRANSLATE_AUDIO_TO = gr.inputs.Dropdown(['en', 'fr', 'de', 'es', 'it', 'ja', 'zh', 'nl', 'uk', 'pt'], default='en',label = 'Translate audio to') gr.Markdown("Select how many people are speaking in the video.") min_speakers = gr.inputs.Slider(1, 6, default=1, label="min_speakers", step=1) max_speakers = gr.inputs.Slider(1, 6, default=2, label="max_speakers",step=1) gr.Markdown("Select the voice you want for each speaker.") tts_voice00 = gr.inputs.Dropdown(list_tts, default='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1') tts_voice01 = gr.inputs.Dropdown(list_tts, default='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2') tts_voice02 = gr.inputs.Dropdown(list_tts, default='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3') tts_voice03 = gr.inputs.Dropdown(list_tts, default='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4') tts_voice04 = gr.inputs.Dropdown(list_tts, default='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5') tts_voice05 = gr.inputs.Dropdown(list_tts, default='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6') gr.Markdown("Default configuration of Whisper.") WHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model") batch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1) compute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type") with gr.Column(variant='compact'): with gr.Row(): video_button = gr.Button("Translate audio of video", ) with gr.Row(): video_output = gr.Video() gr.Examples( examples=[ [ "./assets/Video_subtitled.mp4", "base", 16, "float32", "en", 1, 2, 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-GB-ThomasNeural-Male', 'en-GB-SoniaNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-GB-MaisieNeural-Female', ], ], fn=translate_from_video, inputs=[ video_input, WHISPER_MODEL_SIZE, batch_size, compute_type, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, ], outputs=[video_output], #cache_examples=True, ) with gr.Tab("Translate audio from video link"): with gr.Row(): with gr.Column(): link_input = gr.Textbox(label="Media link. Example: www.youtube.com/watch?v=g_9rPvbENUw", placeholder="URL goes here...") #filename = gr.Textbox(label="File name", placeholder="best-vid") gr.Markdown("Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.") bTRANSLATE_AUDIO_TO = gr.inputs.Dropdown(['en', 'fr', 'de', 'es', 'it', 'ja', 'zh', 'nl', 'uk', 'pt'], default='en',label = 'Translate audio to') gr.Markdown("Select how many people are speaking in the video.") bmin_speakers = gr.inputs.Slider(1, 6, default=1, label="min_speakers", step=1) bmax_speakers = gr.inputs.Slider(1, 6, default=2, label="max_speakers",step=1) gr.Markdown("Select the voice you want for each speaker.") btts_voice00 = gr.inputs.Dropdown(list_tts, default='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1') btts_voice01 = gr.inputs.Dropdown(list_tts, default='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2') btts_voice02 = gr.inputs.Dropdown(list_tts, default='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3') btts_voice03 = gr.inputs.Dropdown(list_tts, default='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4') btts_voice04 = gr.inputs.Dropdown(list_tts, default='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5') btts_voice05 = gr.inputs.Dropdown(list_tts, default='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6') gr.Markdown("Default configuration of Whisper.") bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model") bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1) bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type") # text_button = gr.Button("Translate audio of video") # link_output = gr.Video() #gr.outputs.File(label="Download!") with gr.Column(variant='compact'): with gr.Row(): text_button = gr.Button("Translate audio of video") with gr.Row(): link_output = gr.Video() #gr.outputs.File(label="Download!") # gr.Video() gr.Examples( examples=[ [ "https://www.youtube.com/watch?v=5ZeHtRKHl7Y", "base", 16, "float32", "en", 1, 2, 'en-CA-ClaraNeural-Female', 'en-AU-WilliamNeural-Male', 'en-GB-ThomasNeural-Male', 'en-GB-SoniaNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-GB-MaisieNeural-Female', ], ], fn=translate_from_video, inputs=[ link_input, bWHISPER_MODEL_SIZE, bbatch_size, bcompute_type, bTRANSLATE_AUDIO_TO, bmin_speakers, bmax_speakers, btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05, ], outputs=[video_output], #cache_examples=True, ) with gr.Accordion("Logs"): logs = gr.Textbox() demo.load(read_logs, None, logs, every=1) # run video_button.click(translate_from_video, inputs=[ video_input, WHISPER_MODEL_SIZE, batch_size, compute_type, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05,], outputs=video_output) text_button.click(translate_from_video, inputs=[ link_input, bWHISPER_MODEL_SIZE, bbatch_size, bcompute_type, bTRANSLATE_AUDIO_TO, bmin_speakers, bmax_speakers, btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05,], outputs=link_output) demo.launch(enable_queue=True)