## Restormer: Efficient Transformer for High-Resolution Image Restoration ## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang ## https://arxiv.org/abs/2111.09881 import torch import torch.nn as nn import torch.nn.functional as F from pdb import set_trace as stx import numbers from einops import rearrange ########################################################################## ## Layer Norm def to_3d(x): return rearrange(x, 'b c h w -> b (h w) c') def to_4d(x,h,w): return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w) class BiasFree_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(BiasFree_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): sigma = x.var(-1, keepdim=True, unbiased=False) return x / torch.sqrt(sigma+1e-5) * self.weight class WithBias_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(WithBias_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): mu = x.mean(-1, keepdim=True) sigma = x.var(-1, keepdim=True, unbiased=False) return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias class LayerNorm(nn.Module): def __init__(self, dim, LayerNorm_type): super(LayerNorm, self).__init__() if LayerNorm_type =='BiasFree': self.body = BiasFree_LayerNorm(dim) else: self.body = WithBias_LayerNorm(dim) def forward(self, x): h, w = x.shape[-2:] return to_4d(self.body(to_3d(x)), h, w) ########################################################################## ## Gated-Dconv Feed-Forward Network (GDFN) class FeedForward(nn.Module): def __init__(self, dim, ffn_expansion_factor, bias): super(FeedForward, self).__init__() hidden_features = int(dim*ffn_expansion_factor) self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias) self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias) def forward(self, x): x = self.project_in(x) x1, x2 = self.dwconv(x).chunk(2, dim=1) x = F.gelu(x1) * x2 x = self.project_out(x) return x ########################################################################## ## Multi-DConv Head Transposed Self-Attention (MDTA) class Attention(nn.Module): def __init__(self, dim, num_heads, bias): super(Attention, self).__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias) self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias) self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) def forward(self, x): b,c,h,w = x.shape qkv = self.qkv_dwconv(self.qkv(x)) q,k,v = qkv.chunk(3, dim=1) q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) out = (attn @ v) out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) out = self.project_out(out) return out ########################################################################## class TransformerBlock(nn.Module): def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type): super(TransformerBlock, self).__init__() self.norm1 = LayerNorm(dim, LayerNorm_type) self.attn = Attention(dim, num_heads, bias) self.norm2 = LayerNorm(dim, LayerNorm_type) self.ffn = FeedForward(dim, ffn_expansion_factor, bias) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.ffn(self.norm2(x)) return x ########################################################################## ## Overlapped image patch embedding with 3x3 Conv class OverlapPatchEmbed(nn.Module): def __init__(self, in_c=3, embed_dim=48, bias=False): super(OverlapPatchEmbed, self).__init__() self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) def forward(self, x): x = self.proj(x) return x ########################################################################## ## Resizing modules class Downsample(nn.Module): def __init__(self, n_feat): super(Downsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelUnshuffle(2)) def forward(self, x): return self.body(x) class Upsample(nn.Module): def __init__(self, n_feat): super(Upsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelShuffle(2)) def forward(self, x): return self.body(x) ########################################################################## ##---------- Restormer ----------------------- class Restormer(nn.Module): def __init__(self, inp_channels=3, out_channels=3, dim = 48, num_blocks = [4,6,6,8], num_refinement_blocks = 4, heads = [1,2,4,8], ffn_expansion_factor = 2.66, bias = False, LayerNorm_type = 'WithBias', ## Other option 'BiasFree' dual_pixel_task = False ## True for dual-pixel defocus deblurring only. Also set inp_channels=6 ): super(Restormer, self).__init__() self.patch_embed = OverlapPatchEmbed(inp_channels, dim) self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.down1_2 = Downsample(dim) ## From Level 1 to Level 2 self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) self.down2_3 = Downsample(int(dim*2**1)) ## From Level 2 to Level 3 self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) self.down3_4 = Downsample(int(dim*2**2)) ## From Level 3 to Level 4 self.latent = nn.Sequential(*[TransformerBlock(dim=int(dim*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[3])]) self.up4_3 = Upsample(int(dim*2**3)) ## From Level 4 to Level 3 self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias) self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) self.up3_2 = Upsample(int(dim*2**2)) ## From Level 3 to Level 2 self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias) self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) self.up2_1 = Upsample(int(dim*2**1)) ## From Level 2 to Level 1 (NO 1x1 conv to reduce channels) self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.refinement = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_refinement_blocks)]) #### For Dual-Pixel Defocus Deblurring Task #### self.dual_pixel_task = dual_pixel_task if self.dual_pixel_task: self.skip_conv = nn.Conv2d(dim, int(dim*2**1), kernel_size=1, bias=bias) ########################### self.output = nn.Conv2d(int(dim*2**1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias) def forward(self, inp_img): inp_enc_level1 = self.patch_embed(inp_img) out_enc_level1 = self.encoder_level1(inp_enc_level1) inp_enc_level2 = self.down1_2(out_enc_level1) out_enc_level2 = self.encoder_level2(inp_enc_level2) inp_enc_level3 = self.down2_3(out_enc_level2) out_enc_level3 = self.encoder_level3(inp_enc_level3) inp_enc_level4 = self.down3_4(out_enc_level3) latent = self.latent(inp_enc_level4) inp_dec_level3 = self.up4_3(latent) inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) out_dec_level3 = self.decoder_level3(inp_dec_level3) inp_dec_level2 = self.up3_2(out_dec_level3) inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) out_dec_level2 = self.decoder_level2(inp_dec_level2) inp_dec_level1 = self.up2_1(out_dec_level2) inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) out_dec_level1 = self.decoder_level1(inp_dec_level1) out_dec_level1 = self.refinement(out_dec_level1) #### For Dual-Pixel Defocus Deblurring Task #### if self.dual_pixel_task: out_dec_level1 = out_dec_level1 + self.skip_conv(inp_enc_level1) out_dec_level1 = self.output(out_dec_level1) ########################### else: out_dec_level1 = self.output(out_dec_level1) + inp_img return out_dec_level1