import gradio as gr from tner import TransformersNER from spacy import displacy model = TransformersNER("tner/roberta-large-ontonotes5") #model = TransformersNER("tner/bertweet-large-tweetner7-all") examples = [ "Jacob Collier is a Grammy awarded artist from England.", "When Sebastian Thrun started working on self-driving cars at Google in 2007 , few people outside of the company took him seriously.", "But Google is starting from behind. The company made a late push into hardware, and Apple’s Siri, available on iPhones, and Amazon’s Alexa software, which runs on its Echo and Dot devices, have clear leads in consumer adoption." ] def predict(text): output = model.predict([text]) tokens = output['input'][0] def retain_char_position(p): if p == 0: return 0 return len(' '.join(tokens[:p])) + 1 doc = { "text": text, "ents": [{ "start": retain_char_position(entity['position'][0]), "end": retain_char_position(entity['position'][-1]) + len(entity['entity'][-1]), "label": entity['type'] } for entity in output['entity_prediction'][0]], "title": None } html = displacy.render(doc, style="ent", page=True, manual=True, minify=True) html = ( "