model: base_learning_rate: 1.0e-5 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "image" cond_stage_key: "caption" image_size: 32 channels: 4 cond_stage_trainable: False conditioning_key: crossattn monitor: val/loss_simple_ema scale_factor: 0.18215 use_ema: False weight_disc: 0.01 unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 1280 use_checkpoint: True legacy: False first_stage_config: target: ldm.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.BERTEmbedder params: n_embed: 1280 n_layer: 32 device: "cuda" # discriminator_config: # target: ldm.modules.discriminator.Discriminator # params: # bnorm: True # leakyparam: 0.2 # bias: False # generic: True data: target: main.DataModuleFromConfig params: batch_size: 1 num_workers: 32 wrap: false train: target: ldm.data.rasterizer.Rasterizer params: img_size: 256 text: "R" style_word: "DRAGON" data_path: "data/cat" alternate_glyph: None num_samples: 2001 make_black: False one_font: False full_word: False font_name: "Garuda-Bold.ttf" just_use_style: false use_alt: False validation: target: ldm.data.rasterizer.Rasterizer params: img_size: 256 text: "R" style_word: "DRAGON" data_path: "data/cat" alternate_glyph: None num_samples: 5 make_black: False one_font: False full_word: False font_name: "Garuda-Bold.ttf" just_use_style: false use_alt: False lightning: modelcheckpoint: params: every_n_train_steps: 5000 callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 1000 max_images: 1 increase_log_steps: False trainer: benchmark: True max_steps: 500