import streamlit as st from duckduckgo_search import ddg import pandas as pd from sentence_transformers import SentenceTransformer import umap.umap_ as umap import numpy as np import sys import plotly.express as px # The search bar keywords = st.text_input('Enter your search', 'The future of AI') # Set keywords as command line argument # print("searching for: " + ' '.join(sys.argv[1:]) + "...") # keywords = ' '.join(sys.argv[1:]) to_display = 'body' # Sometimes this is title md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500) md = pd.DataFrame(md) # Load the model print("running sentence embeddings...") # model_name = 'all-mpnet-base-v2' model_name = 'all-MiniLM-L6-v2' model = SentenceTransformer(model_name) sentence_embeddings = model.encode(md['body'].tolist(), show_progress_bar = True) sentence_embeddings = pd.DataFrame(sentence_embeddings) # Reduce dimensionality print("reducing dimensionality...") reducer = umap.UMAP(metric = 'cosine') dimr = reducer.fit_transform(sentence_embeddings) dimr = pd.DataFrame(dimr, columns = ['umap1', 'umap2']) columns = ['title', 'href', 'body'] # Merge the data together dat = pd.concat([dimr.reset_index(), md.reset_index()], axis = 1) # Get it ready for plotting dat['title'] = dat.title.str.wrap(30).apply(lambda x: x.replace('\n', '
')) dat['body'] = dat.body.str.wrap(30).apply(lambda x: x.replace('\n', '
')) # Visualize fig = px.scatter(dat, x = 'umap1', y = 'umap2', hover_data = ['title', 'body'], title = 'Context similarity map of results') st.plotly_chart(fig, use_container_width=True) # A table under the plot st.dataframe(dat)