import streamlit as st
from duckduckgo_search import ddg
import pandas as pd
from sentence_transformers import SentenceTransformer
import umap.umap_ as umap
import numpy as np
import sys
import plotly.express as px
import re
import sklearn.cluster as cluster
# Set a seed
np.random.seed(42)
# The search bar
keywords = st.text_input('Enter your search', 'How to use ChatGPT')
# Set keywords as command line argument
# print("searching for: " + ' '.join(sys.argv[1:]) + "...")
# keywords = ' '.join(sys.argv[1:])
to_display = 'body' # Sometimes this is title
md = ddg(keywords, region='wt-wt', safesearch='Moderate', time='y', max_results=500)
md = pd.DataFrame(md)
# Load the model
print("running sentence embeddings...")
# model_name = 'all-mpnet-base-v2'
model_name = 'all-MiniLM-L6-v2'
model = SentenceTransformer(model_name)
sentence_embeddings = model.encode(md['body'].tolist(), show_progress_bar = True)
sentence_embeddings = pd.DataFrame(sentence_embeddings)
# Reduce dimensionality
print("reducing dimensionality...")
reducer = umap.UMAP(metric = 'cosine')
dimr = reducer.fit_transform(sentence_embeddings)
dimr = pd.DataFrame(dimr, columns = ['umap1', 'umap2'])
columns = ['title', 'href', 'body']
# Clustering
labels = cluster.KMeans(n_clusters=5).fit_predict(dimr[['umap1', 'umap2']])
dimr['cluster'] = labels
# Make the coloring easier on the eyes
dimr['cluster'] = dimr['cluster'].astype('category')
# Now we can search cluster in the table
dimr['cluster'] = ['cluster ' + str(x) for x in dimr['cluster']]
# Merge the data together
dat = pd.concat([md.reset_index(), dimr.reset_index()], axis = 1)
# handle duplicate index columns
dat = dat.loc[:,~dat.columns.duplicated()]
# Get it ready for plotting
dat['title'] = dat.title.str.wrap(30).apply(lambda x: x.replace('\n', '
'))
dat['body'] = dat.body.str.wrap(30).apply(lambda x: x.replace('\n', '
'))
# Visualize the data
fig = px.scatter(dat, x = 'umap1', y = 'umap2', hover_data = ['title', 'body'], color = 'cluster', title = 'Context similarity map of results')
# Make the font a little bigger
fig.update_layout(
hoverlabel=dict(
bgcolor="white",
font_size=16
)
)
# x and y are same size
fig.update_yaxes(
scaleanchor="x",
scaleratio=1,
)
# Show the figure
st.plotly_chart(fig, use_container_width=True)
# Remove
in the text for the table
dat['title'] = [re.sub('
', ' ', i) for i in dat['title']]
dat['body'] = [re.sub('
', ' ', i) for i in dat['body']]
# Instructions
st.caption('Use ctrl+f (or command+f for mac) to search the table')
# remove columns umap1 and umap2 from dat
dat = dat.drop(columns=['index', 'umap1', 'umap2'])
# Make the link clickable
# pandas display options
pd.set_option('display.max_colwidth', -1)
def make_clickable(url, text):
return f'{text}'
dat['href'] = dat['href'].apply(make_clickable, args = ('Click here',))
st.write(dat.to_html(escape = False), unsafe_allow_html = True)