import streamlit as st # from dash import Dash, dcc, html, dash_table, Input, Output, State import plotly.express as px import pandas as pd from sentence_transformers import SentenceTransformer from scipy.spatial import distance import re import textwrap import base64 question = st.text_input('Ask Marcus Aurelius a question') dat = pd.read_csv('meditations_processed.csv') space = pd.read_csv('sentence_embeddings.csv') # For update function model_name = 'all-mpnet-base-v2' model = SentenceTransformer(model_name) def update_table(value): if not value: return text_coord = model.encode(value, show_progress_bar = True) out = pd.concat([dat.reset_index(), space], axis = 1) cos_dist = [] embedding_cols = [str(i) for i in range(768)] for i in range(0, out.shape[0]): curr = out.iloc[i] curr = curr[embedding_cols] curr_dist = distance.cosine(u = text_coord, v = curr) cos_dist.append(curr_dist) out['cos_dist'] = cos_dist out = out.sort_values('cos_dist') out = out.head(10) out = out[['book', 'verse', 'text', 'cos_dist']] return(out) final = update_table(question) st.table(final)