Upload thai_maternal_health.py
Browse files- thai_maternal_health.py +78 -0
thai_maternal_health.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""thai maternal health.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1sk8TdnCQ8qOKCkzn_hPmCj8uU6xaV3HM
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Simple Chatbot Gradio + Google Gemini API 🚀
|
11 |
+
|
12 |
+
#@title Mostrar Imagen
|
13 |
+
from IPython.display import Image
|
14 |
+
url = 'https://github.com/AleNunezArroyo/Medium/blob/main/img/BannerM4.png?raw=true'
|
15 |
+
Image(url=url, width=800)
|
16 |
+
|
17 |
+
# Install the Python SDK
|
18 |
+
!pip install -q -U google-generativeai
|
19 |
+
|
20 |
+
# The library and API Key information is added
|
21 |
+
import google.generativeai as genai
|
22 |
+
import time # Import the time module
|
23 |
+
|
24 |
+
# Replace with your actual Google API key
|
25 |
+
GOOGLE_API_KEY = "AIzaSyDw4vZTtNZrHN32Ekv5sS-FTvgp3KkqQhk"
|
26 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
27 |
+
|
28 |
+
# Model configuration
|
29 |
+
model = genai.GenerativeModel('gemini-pro')
|
30 |
+
|
31 |
+
# Chat conversations
|
32 |
+
chat = model.start_chat(history=[])
|
33 |
+
|
34 |
+
# Prompt tuning for maternal health
|
35 |
+
def maternal_health_prompt(language_code):
|
36 |
+
return f"""You are a knowledgeable and compassionate maternal health expert.
|
37 |
+
Provide accurate, clear, and culturally sensitive information about maternal health,
|
38 |
+
pregnancy, childbirth, and postpartum care. Respond in the language corresponding to the language code: {language_code}.
|
39 |
+
Keep responses concise, friendly, and focused on evidence-based medical information.
|
40 |
+
If you're unsure about anything, recommend consulting a healthcare provider."""
|
41 |
+
|
42 |
+
# Transform Gradio history to Gemini format
|
43 |
+
def transform_history(history):
|
44 |
+
new_history = []
|
45 |
+
for chat in history:
|
46 |
+
new_history.append({"parts": [{"text": chat[0]}], "role": "user"})
|
47 |
+
new_history.append({"parts": [{"text": chat[1]}], "role": "model"})
|
48 |
+
return new_history
|
49 |
+
|
50 |
+
# Response function
|
51 |
+
def response(message, history, language_code):
|
52 |
+
global chat
|
53 |
+
# Update the chat history in the Gemini format
|
54 |
+
chat.history = transform_history(history)
|
55 |
+
|
56 |
+
# Use the prompt tuning for the maternal health expert context
|
57 |
+
prompt = maternal_health_prompt(language_code) + f"\n\nUser: {message}"
|
58 |
+
|
59 |
+
# Send the message and get the response
|
60 |
+
response = chat.send_message(prompt)
|
61 |
+
response.resolve()
|
62 |
+
|
63 |
+
# Each character of the answer is displayed
|
64 |
+
for i in range(len(response.text)):
|
65 |
+
time.sleep(0.05)
|
66 |
+
yield response.text[: i + 1]
|
67 |
+
|
68 |
+
# Gradio interface
|
69 |
+
import gradio as gr
|
70 |
+
|
71 |
+
# Set up Gradio interface
|
72 |
+
language_code = "th-TH" # Change this to the desired language code
|
73 |
+
gr.ChatInterface(response,
|
74 |
+
title='Maternal Health Chatbot',
|
75 |
+
textbox=gr.Textbox(placeholder="Ask your question about maternal health")).launch(debug=True)
|
76 |
+
|
77 |
+
# Save chat history if necessary
|
78 |
+
# chat.history can be accessed to save conversation history if required.
|