import gradio as gr from transformers import pipeline # prefix = "<2id> " # madlad = pipeline("translation", model="google/madlad400-3b-mt") lulu = pipeline("translation", model="tirtohadi/lulu-v1") def translate(text): # Split input text into paragraphs paragraphs = text.split("\n\n") # Assuming paragraphs are separated by two newline characters # Translate each paragraph translated_paragraphs_lulu = [] #translated_paragraphs_madlad = [] for paragraph in paragraphs: # Call your custom model here to translate each paragraph # translated_paragraph_madlad = madlad(prefix + paragraph, max_length=400)[0]["translation_text"] # translated_paragraphs_madlad.append(translated_paragraph_madlad) translated_paragraph_lulu = lulu(paragraph, max_length=400)[0]["translation_text"] translated_paragraphs_lulu.append(translated_paragraph_lulu) # Join translated paragraphs back into text translated_text_lulu = "\n\n".join(translated_paragraphs_lulu) # translated_text_madlad = "\n\n".join(translated_paragraphs_madlad) return translated_text_lulu #,translated_text_madlad with gr.Blocks() as demo: gr.HTML("

Lulu Translate

") gr.Markdown("Lulu is a Christian domain specific machine translation") with gr.Row(): input_text1 = gr.Textbox(label="English Text",lines=5) output_lulu = gr.Textbox(label="Indonesian Translation",lines=5) with gr.Row(): with gr.Column(scale=1): btn = gr.Button("Translate") btn.click(fn=translate, inputs=input_text1, outputs=[output_lulu], api_name="translate") demo.launch()