Spaces:
Runtime error
Runtime error
Thong Nguyen
commited on
Commit
•
ca276a7
1
Parent(s):
c1b1966
add mama code
Browse files- app.py +198 -5
- requirements.txt +8 -2
- video_keyframe_detector +1 -0
app.py
CHANGED
@@ -1,16 +1,209 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def video_to_text(video_file):
|
10 |
video_path = video_file.name
|
11 |
-
transcription = model.transcribe(video_path)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
iface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
import argparse
|
3 |
+
import shutil
|
4 |
import os
|
5 |
+
from video_keyframe_detector.cli import keyframeDetection
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
from llava.constants import (
|
9 |
+
IMAGE_TOKEN_INDEX,
|
10 |
+
DEFAULT_IMAGE_TOKEN,
|
11 |
+
DEFAULT_IM_START_TOKEN,
|
12 |
+
DEFAULT_IM_END_TOKEN,
|
13 |
+
IMAGE_PLACEHOLDER,
|
14 |
+
)
|
15 |
+
from PIL import Image
|
16 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
17 |
+
from llava.model.builder import load_pretrained_model
|
18 |
+
from llava.utils import disable_torch_init
|
19 |
+
from llava.mm_utils import (
|
20 |
+
process_images,
|
21 |
+
tokenizer_image_token,
|
22 |
+
get_model_name_from_path,
|
23 |
+
KeywordsStoppingCriteria,
|
24 |
+
)
|
25 |
+
import torch
|
26 |
+
|
27 |
+
|
28 |
+
def extract_keyframes(video_path, num_keyframes=12):
|
29 |
+
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
30 |
+
|
31 |
+
os.makedirs("temp", exist_ok=True)
|
32 |
+
|
33 |
+
keyframeDetection(video_path, "temp", 0.6)
|
34 |
+
video_frame_list = sorted(os.listdir(os.path.join("temp", "keyFrames")), key=lambda x: int(x.split('.')[0][8:]))
|
35 |
+
os.makedirs(os.path.join("video_frames", video_id), exist_ok=True)
|
36 |
+
selected_frame_idx_set = set(np.linspace(1, len(video_frame_list) - 1, num_keyframes).astype(int))
|
37 |
+
cnt = 0
|
38 |
+
for i in range(len(video_frame_list)):
|
39 |
+
if i in selected_frame_idx_set:
|
40 |
+
source_file = os.path.join("temp", "keyFrames", video_frame_list[i])
|
41 |
+
target_file = os.path.join("video_frames", video_id, f"frame_{cnt}.jpg")
|
42 |
+
shutil.copyfile(source_file, target_file)
|
43 |
+
cnt += 1
|
44 |
+
|
45 |
+
shutil.rmtree("temp", ignore_errors=True)
|
46 |
+
|
47 |
+
|
48 |
+
def concatenate_frames(video_path):
|
49 |
+
os.makedirs("concatenated_frames", exist_ok=True)
|
50 |
+
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
51 |
+
image_frame_dir = os.path.join("video_frames", video_id)
|
52 |
+
image_frame_list = sorted(os.listdir(os.path.join(image_frame_dir)), key=lambda x: int(x.split('.')[0].split('_')[1]))
|
53 |
+
img_list = []
|
54 |
+
for image_frame in image_frame_list:
|
55 |
+
img_frame = cv2.imread(os.path.join(image_frame_dir, image_frame))
|
56 |
+
img_list.append(img_frame)
|
57 |
+
|
58 |
+
img_row1 = cv2.hconcat(img_list[:4])
|
59 |
+
img_row2 = cv2.hconcat(img_list[4:8])
|
60 |
+
img_row3 = cv2.hconcat(img_list[8:12])
|
61 |
+
|
62 |
+
img_v = cv2.vconcat([img_row1, img_row2, img_row3])
|
63 |
+
cv2.imwrite(os.path.join("concatenated_frames", f"{video_id}.jpg"), img_v)
|
64 |
+
|
65 |
+
|
66 |
+
def image_parser(args):
|
67 |
+
out = args.image_file.split(args.sep)
|
68 |
+
return out
|
69 |
+
|
70 |
+
|
71 |
+
def load_image(image_file):
|
72 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
73 |
+
response = requests.get(image_file)
|
74 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
75 |
+
else:
|
76 |
+
image = Image.open(image_file).convert("RGB")
|
77 |
+
return image
|
78 |
+
|
79 |
+
|
80 |
+
def load_images(image_files):
|
81 |
+
out = []
|
82 |
+
for image_file in image_files:
|
83 |
+
image = load_image(image_file)
|
84 |
+
out.append(image)
|
85 |
+
return out
|
86 |
+
|
87 |
+
def eval_model(args, model_name, tokenizer, model, image_processor, context_len):
|
88 |
+
# Model
|
89 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
90 |
+
disable_torch_init()
|
91 |
|
92 |
+
qs = args.query
|
93 |
+
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
94 |
+
|
95 |
+
if model.config.mm_use_im_start_end:
|
96 |
+
qs = image_token_se + "\n" + qs
|
97 |
+
else:
|
98 |
+
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
|
99 |
+
|
100 |
+
if "llama-2" in model_name.lower():
|
101 |
+
conv_mode = "llava_llama_2"
|
102 |
+
elif "v1" in model_name.lower():
|
103 |
+
conv_mode = "llava_v1"
|
104 |
+
elif "mpt" in model_name.lower():
|
105 |
+
conv_mode = "mpt"
|
106 |
+
else:
|
107 |
+
conv_mode = "llava_v0"
|
108 |
+
|
109 |
+
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
110 |
+
print(
|
111 |
+
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
|
112 |
+
conv_mode, args.conv_mode, args.conv_mode
|
113 |
+
)
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
args.conv_mode = conv_mode
|
117 |
+
|
118 |
+
conv = conv_templates[args.conv_mode].copy()
|
119 |
+
conv.append_message(conv.roles[0], qs)
|
120 |
+
conv.append_message(conv.roles[1], None)
|
121 |
+
prompt = conv.get_prompt()
|
122 |
+
|
123 |
+
image_files = image_parser(args)
|
124 |
+
images = load_images(image_files)
|
125 |
+
images_tensor = process_images(
|
126 |
+
images,
|
127 |
+
image_processor,
|
128 |
+
model.config
|
129 |
+
).to(model.device, dtype=torch.float16)
|
130 |
+
|
131 |
+
input_ids = (
|
132 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
133 |
+
.unsqueeze(0)
|
134 |
+
.cuda()
|
135 |
+
)
|
136 |
+
|
137 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
138 |
+
keywords = [stop_str]
|
139 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
140 |
+
|
141 |
+
with torch.inference_mode():
|
142 |
+
output_ids = model.generate(
|
143 |
+
input_ids,
|
144 |
+
images=images_tensor,
|
145 |
+
do_sample=True,
|
146 |
+
temperature=0.2,
|
147 |
+
max_new_tokens=1024,
|
148 |
+
use_cache=True,
|
149 |
+
stopping_criteria=[stopping_criteria],
|
150 |
+
)
|
151 |
+
|
152 |
+
input_token_len = input_ids.shape[1]
|
153 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
154 |
+
if n_diff_input_output > 0:
|
155 |
+
print(
|
156 |
+
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids"
|
157 |
+
)
|
158 |
+
outputs = tokenizer.batch_decode(
|
159 |
+
output_ids[:, input_token_len:], skip_special_tokens=True
|
160 |
+
)[0]
|
161 |
+
outputs = outputs.strip()
|
162 |
+
if outputs.endswith(stop_str):
|
163 |
+
outputs = outputs[: -len(stop_str)]
|
164 |
+
outputs = outputs.strip()
|
165 |
+
return outputs
|
166 |
+
|
167 |
+
|
168 |
+
def generate_video_caption(video_path):
|
169 |
+
model_path = "liuhaotian/llava-v1.5-7b"
|
170 |
+
model_name = get_model_name_from_path(model_path)
|
171 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
|
172 |
+
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
173 |
+
|
174 |
+
image_file = os.path.join("concatenated_frames", f"{video_id}.jpg")
|
175 |
+
prompt = "In a short paragraph, describe the process in the video."
|
176 |
+
|
177 |
+
args = type('Args', (), {
|
178 |
+
"model_path": model_path,
|
179 |
+
"model_base": None,
|
180 |
+
"model_name": get_model_name_from_path(model_path),
|
181 |
+
"query": prompt,
|
182 |
+
"conv_mode": None,
|
183 |
+
"image_file": image_file,
|
184 |
+
"sep": ",",
|
185 |
+
"max_new_tokens": 1024,
|
186 |
+
"temperature": 0.2
|
187 |
+
})()
|
188 |
+
|
189 |
+
video_caption = eval_model(args, model_name, tokenizer, model, image_processor, context_len).replace("images", "video").replace("image", "video")
|
190 |
+
return video_caption
|
191 |
+
|
192 |
+
|
193 |
+
def clean_files_and_folders():
|
194 |
+
shutil.rmtree("concatenated_frames")
|
195 |
+
shutil.rmtree("video_frames")
|
196 |
|
197 |
|
198 |
def video_to_text(video_file):
|
199 |
video_path = video_file.name
|
|
|
200 |
|
201 |
+
extract_keyframes(video_path)
|
202 |
+
concatenate_frames(video_path)
|
203 |
+
video_caption = generate_video_caption(video_path)
|
204 |
+
clean_files_and_folders()
|
205 |
+
|
206 |
+
return video_caption
|
207 |
|
208 |
|
209 |
iface = gr.Interface(
|
requirements.txt
CHANGED
@@ -1,3 +1,9 @@
|
|
1 |
gradio
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
numpy==1.26.4
|
3 |
+
opencv-python
|
4 |
+
torch==2.1.2
|
5 |
+
torchvision==0.16.2
|
6 |
+
peakutils
|
7 |
+
matplotlib
|
8 |
+
protobuf
|
9 |
+
git+git://github.com/haotian-liu/LLaVA.git
|
video_keyframe_detector
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 5224a4f731ebe4277f8a04261e8268de9f9a077f
|