"""FastAPI endpoint To run locally use 'uvicorn app:app --host localhost --port 7860' """ import re from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from mathtext.sentiment import sentiment from mathtext.text2int import text2int from pydantic import BaseModel from mathtext_fastapi.logging import prepare_message_data_for_logging from mathtext_fastapi.conversation_manager import manage_conversation_response from mathtext_fastapi.nlu import evaluate_message_with_nlu app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") class Text(BaseModel): content: str = "" @app.get("/") def home(request: Request): return templates.TemplateResponse("home.html", {"request": request}) @app.post("/hello") def hello(content: Text = None): content = {"message": f"Hello {content.content}!"} return JSONResponse(content=content) @app.post("/sentiment-analysis") def sentiment_analysis_ep(content: Text = None): ml_response = sentiment(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/text2int") def text2int_ep(content: Text = None): ml_response = text2int(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversational_response(data_dict) return JSONResponse(context) @app.post("/nlu") async def evaluate_user_message_with_nlu_api(request: Request): """ Calls nlu evaluation and returns the nlu_response Input - request.body: json - message data for the most recent user response Output - int_data_dict or sent_data_dict: dict - the type of NLU run and result {'type':'integer', 'data': '8'} {'type':'sentiment', 'data': 'negative'} """ data_dict = await request.json() message_data = data_dict.get('message_data', '') nlu_response = evaluate_message_with_nlu(message_data) return JSONResponse(content=nlu_response)