"""FastAPI endpoint To run locally use 'uvicorn app:app --host localhost --port 7860' or `python -m uvicorn app:app --reload --host localhost --port 7860` """ import ast from json import JSONDecodeError from logging import getLogger import mathactive.microlessons.num_one as num_one_quiz import os import sentry_sdk from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates # from mathtext.sentiment import sentiment from mathtext.text2int import text2int from mathtext_fastapi.logging import prepare_message_data_for_logging from mathtext_fastapi.conversation_manager import manage_conversation_response from mathtext_fastapi.v2_conversation_manager import manage_conversation_response from mathtext_fastapi.nlu import evaluate_message_with_nlu from mathtext_fastapi.nlu import run_intent_classification from pydantic import BaseModel from dotenv import load_dotenv load_dotenv() log = getLogger(__name__) sentry_sdk.init( dsn=os.environ.get('SENTRY_DSN'), # Set traces_sample_rate to 1.0 to capture 100% # of transactions for performance monitoring. # We recommend adjusting this value in production, traces_sample_rate=1.0, ) app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") class Text(BaseModel): content: str = "" @app.get("/") def home(request: Request): return templates.TemplateResponse("home.html", {"request": request}) @app.get("/sentry-debug") async def trigger_error(): division_by_zero = 1 / 0 @app.post("/hello") def hello(content: Text = None): content = {"message": f"Hello {content.content}!"} return JSONResponse(content=content) # @app.post("/sentiment-analysis") # def sentiment_analysis_ep(content: Text = None): # ml_response = sentiment(content.content) # content = {"message": ml_response} # return JSONResponse(content=content) @app.post("/text2int") def text2int_ep(content: Text = None): ml_response = text2int(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/v1/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversation_response(data_dict) return JSONResponse(context) @app.post("/v2/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversation_response(data_dict) return JSONResponse(context) @app.post("/intent-classification") def intent_classification_ep(content: Text = None): ml_response = run_intent_classification(content.content) content = {"message": ml_response} return JSONResponse(content=content) import json @app.post("/nlu") async def evaluate_user_message_with_nlu_api(request: Request): """ Calls nlu evaluation and returns the nlu_response Input - request.body: json - message data for the most recent user response Output - int_data_dict or sent_data_dict: dict - the type of NLU run and result {'type':'integer', 'data': '8', 'confidence': 0} {'type':'sentiment', 'data': 'negative', 'confidence': 0.99} """ log.info(f'Received request: {request}') log.info(f'Request header: {request.headers}') log.info(f'Request body: {request.body()}') try: data_dict = await request.json() except JSONDecodeError: log.error(f'Request.json failed: {dir(request)}') data_dict = {} message_data = data_dict.get('message_data') if not message_data: log.error(f'Data_dict: {data_dict}') message_data = data_dict.get('message', {}) nlu_response = evaluate_message_with_nlu(message_data) return JSONResponse(content=nlu_response) @app.post("/num_one") async def num_one(request: Request): """ Input: { "user_id": 1, "message_text": 5, } Output: { 'messages': ["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'], 'input_prompt': '50', 'state': 'question' } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) user_id = message_data['user_id'] message_text = message_data['message_text'] return num_one_quiz.process_user_message(user_id, message_text) @app.post("/start") async def ask_math_question(request: Request): """Generate a question data Input { 'difficulty': 0.1, 'do_increase': True | False } Output { 'text': 'What is 1+2?', 'difficulty': 0.2, 'question_numbers': [3, 1, 4] } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] do_increase = message_data['do_increase'] return JSONResponse(generators.start_interactive_math(difficulty, do_increase)) @app.post("/hint") async def get_hint(request: Request): """Generate a hint data Input { 'start': 5, 'step': 1, 'difficulty': 0.1 } Output { 'text': 'What number is greater than 4 and less than 6?', 'difficulty': 0.1, 'question_numbers': [5, 1, 6] } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] difficulty = message_data['difficulty'] return JSONResponse(hints.generate_hint(start, step, difficulty)) @app.post("/question") async def ask_math_question(request: Request): """Generate a question data Input { 'start': 5, 'step': 1, 'question_num': 1 # optional } Output { 'question': 'What is 1+2?', 'start': 5, 'step': 1, 'answer': 6 } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] arg_tuple = (start, step) try: question_num = message_data['question_num'] arg_tuple += (question_num,) except KeyError: pass return JSONResponse(questions.generate_question_data(*arg_tuple)) @app.post("/difficulty") async def get_hint(request: Request): """Generate a number matching difficulty Input { 'difficulty': 0.01, 'do_increase': True } Output - value from 0.01 to 0.99 inclusively: 0.09 """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] do_increase = message_data['do_increase'] return JSONResponse(utils.get_next_difficulty(difficulty, do_increase)) @app.post("/start_step") async def get_hint(request: Request): """Generate a start and step values Input { 'difficulty': 0.01, 'path_to_csv_file': 'scripts/quiz/data.csv' # optional } Output - tuple (start, step): (5, 1) """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] arg_tuple = (difficulty,) try: path_to_csv_file = message_data['path_to_csv_file'] arg_tuple += (path_to_csv_file,) except KeyError: pass return JSONResponse(utils.get_next_difficulty(*arg_tuple)) @app.post("/sequence") async def generate_question(request: Request): """Generate a sequence from start, step and optional separator parameter Input { 'start': 5, 'step': 1, 'sep': ', ' # optional } Output 5, 6, 7 """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] arg_tuple = (start, step) try: sep = message_data['sep'] arg_tuple += (sep,) except KeyError: pass return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))