import math from datetime import datetime import matplotlib.pyplot as plt import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) log_files = [ 'call_history_sentiment_1_bash.csv', 'call_history_text2int_1_bash.csv', ] for log_file in log_files: path_ = f"./data/{log_file}" df = pd.read_csv(filepath_or_buffer=path_, sep=";") df["finished_ts"] = df["finished"].apply( lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:%S.%f").timestamp()) df["started_ts"] = df["started"].apply( lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:%S.%f").timestamp()) df["elapsed"] = df["finished_ts"] - df["started_ts"] df["success"] = df["outputs"].apply(lambda x: 0 if "Time-out" in x else 1) student_numbers = sorted(df['active_students'].unique()) bins_dict = dict() # bins size for each group min_finished_dict = dict() # zero time for each group for student_number in student_numbers: # for each student group calculates bins size and zero time min_finished = df["finished_ts"][df["active_students"] == student_number].min() max_finished = df["finished_ts"][df["active_students"] == student_number].max() bins = math.ceil(max_finished - min_finished) bins_dict.update({student_number: bins}) min_finished_dict.update({student_number: min_finished}) print(f"student number: {student_number}") print(f"min finished: {min_finished}") print(f"max finished: {max_finished}") print(f"bins finished seconds: {bins}, minutes: {bins / 60}") df["time_line"] = None for student_number in student_numbers: # calculates time-line for each student group df["time_line"] = df.apply( lambda x: x["finished_ts"] - min_finished_dict[student_number] if x["active_students"] == student_number else x["time_line"], axis=1 ) # creates a '.csv' from the dataframe df.to_csv(f"./data/processed_{log_file}", index=False, sep=";") result = df.groupby(['active_students', 'success']) \ .agg({ 'elapsed': ['mean', 'median', 'min', 'max'], 'success': ['count'], }) print(f"Results for {log_file}") print(result, "\n") title = None if "sentiment" in log_file.lower(): title = "API result for 'sentiment-analysis' endpoint" elif "text2int" in log_file.lower(): title = "API result for 'text2int' endpoint" for student_number in student_numbers: # Prints percentage of the successful and failed calls try: failed_calls = result.loc[(student_number, 0), 'success'][0] except: failed_calls = 0 successful_calls = result.loc[(student_number, 1), 'success'][0] percentage = (successful_calls / (failed_calls + successful_calls)) * 100 print(f"Percentage of successful API calls for {student_number} students: {percentage.__round__(2)}") rows = len(student_numbers) fig, axs = plt.subplots(rows, 2) # (rows, columns) for index, student_number in enumerate(student_numbers): # creates a boxplot for each test group data = df[df["active_students"] == student_number] axs[index][0].boxplot(x=data["elapsed"]) # axs[row][column] # axs[index][0].set_title(f'Boxplot for {student_number} students') axs[index][0].set_xlabel(f'student number {student_number}') axs[index][0].set_ylabel('Elapsed time (s)') # creates a histogram for each test group axs[index][1].hist(x=data["elapsed"], bins=25) # axs[row][column] # axs[index][1].set_title(f'Histogram for {student_number} students') axs[index][1].set_xlabel('seconds') axs[index][1].set_ylabel('Count of API calls') fig.suptitle(title, fontsize=16) fig, axs = plt.subplots(rows, 1) # (rows, columns) for index, student_number in enumerate(student_numbers): # creates a histogram and shows API calls on a timeline for each test group data = df[df["active_students"] == student_number] print(data["time_line"].head(10)) axs[index].hist(x=data["time_line"], bins=bins_dict[student_number]) # axs[row][column] # axs[index][1].set_title(f'Histogram for {student_number} students') axs[index].set_xlabel('seconds') axs[index].set_ylabel('Count of API calls') fig.suptitle(title, fontsize=16) plt.show()