import gradio as gr from transformers import GPT2Tokenizer from thirdai import bolt, licensing licensing.activate("7511CC-0E24D7-69439D-5D6CBA-33AAFD-V3") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = bolt.GenerativeModel.load("./generative.model") def generate(prompt, beam_width, temperature): prompt = tokenizer.encode(prompt.strip()) stream = model.streaming_generate( input_tokens=prompt, prediction_chunk_size=2, max_predictions=80, beam_width=beam_width, temperature=temperature if temperature > 0 else None, ) for res in stream: yield tokenizer.decode(res) with gr.Blocks() as demo: prompt = gr.Textbox(label="Prompt", autofocus=True) output = gr.TextArea(label="Output", lines=5) beam_width = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Beam Width") temperature = gr.Slider( minimum=0, maximum=3, step=0.1, value=1.2, label="Temperature (0 means temperature isn't used)", ) prompt.submit(generate, inputs=[prompt, beam_width, temperature], outputs=[output]) btn = gr.Button(value="Generate") btn.click(generate, inputs=[prompt, beam_width, temperature], outputs=[output]) gr.ClearButton(components=[prompt, output]) gr.Markdown( value=""" # BOLT2.5B BOLT2.5B is meticulously trained on CPUs, employing dynamic sparse technology, which lies at the core of our groundbreaking BOLT engine. A decade of dedicated research has culminated in BOLT, ensuring unparalleled efficiency for neural networks. The dynamic sparsity feature empowers us to selectively activate neural pathways, enabling optimal training even on CPU resources. This release have 2.5 billion parameter model, along with both inference and training scripts tailored for distributed as well as single machine training scenarios. For more information check out our blog [here](https://medium.com/thirdai-blog/introducing-the-worlds-first-generative-llm-pre-trained-only-on-cpus-meet-thirdai-s-bolt2-5b-10c0600e1af4). Note: This model is only trained on next word prediction, no instruct fine tuning has been done. No instruction data is used in training. """ ) if __name__ == "__main__": demo.queue() demo.launch()