import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall): new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, 'cp':cp,'trtbps':trtbps,'chol':chol, 'fbs':fbs, 'restecg':restecg, 'thalachh':thalachh, 'exng':exng, 'oldpeak':oldpeak, 'slp':slp, 'caa':caa, 'thall':thall}, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Low Change": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Heart Attack Predictor & Interpreter** 🪐" description1 = """ This app predicts heart attacks using various factors from subjects. Do not use for medical diagnosis.✨ """ description2 = """ To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. 🤞 """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") # gr.Markdown("""![marketing](file/marketing.jpg)""") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") age = gr.Slider(label="age Score", minimum=15, maximum=90, value=4, step=1) sex = gr.Slider(label="sex Score", minimum=1, maximum=5, value=4, step=1) cp = gr.Slider(label="cp Score", minimum=1, maximum=5, value=4, step=1) trtbps = gr.Slider(label="GrowthAdvancement Score", minimum=1, maximum=5, value=4, step=1) chol = gr.Slider(label="chol Score", minimum=1, maximum=5, value=4, step=1) fbs = gr.Slider(label="fbs Score", minimum=1, maximum=5, value=4, step=1) restecg = gr.Slider(label="restecg Score", minimum=1, maximum=5, value=4, step=1) thalacch = gr.Slider(label="thalacch Score", minimum=1, maximum=5, value=4, step=1) exng = gr.Slider(label="exng Score", minimum=1, maximum=5, value=4, step=1) oldpeak = gr.Slider(label="oldpeak Score", minimum=1, maximum=5, value=4, step=1) slp = gr.Slider(label="slp Score", minimum=1, maximum=5, value=4, step=1) caa = gr.Slider(label="caa Score", minimum=1, maximum=5, value=4, step=1) thall = gr.Slider(label="thall Score", minimum=1, maximum=5, value=4, step=1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], api_name="Heart_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[24,0,4,4,4,4,5,5,1,2,3], [24,0,4,4,3,2,5,5,1,2,3]], [age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True) demo.launch()