import gradio as gr import pickle import torch import numpy as np from transformers import BertTokenizer, BertModel from sklearn.linear_model import LogisticRegression # Load BERT tokenizer and model tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') bert_model = BertModel.from_pretrained('bert-base-uncased') # Load the trained Logistic Regression classifier with open('bert_cased_model.pkl', 'rb') as model_file: classifier = pickle.load(model_file) # Define function to preprocess and classify text def classify_text(text): # Preprocess text and get BERT embeddings inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): outputs = bert_model(**inputs) embeddings = outputs.last_hidden_state[:, 0, :].numpy() # Predict using the classifier label = classifier.predict(embeddings) return label[0] # Create the Gradio interface iface = gr.Interface( fn=classify_text, inputs="text", outputs="text", title="Text Classification: Human or AI?", description="Enter a text to classify whether it's generated by a human or AI.", ) # Launch the Gradio interface iface.launch()