import argparse import os import shutil from langchain_community.document_loaders import PyPDFDirectoryLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.schema.document import Document from langchain_community.vectorstores import Chroma from langchain_community.embeddings.bedrock import BedrockEmbeddings import json import requests from chromadb import Documents, EmbeddingFunction, Embeddings CHROMA_PATH = "chroma" DATA_PATH = "pdfs" class MyEmbeddingFunction(EmbeddingFunction): def embed_documents(self, input: Documents) -> Embeddings: for i in range(5): try: embeddings = [] url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5" payload = json.dumps({ "inputs": input }) headers = { 'Accept': 'application/json, text/plain, */*', 'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6', 'Connection': 'keep-alive', 'Content-Type': 'application/json', 'Origin': 'https://deepinfra.com', 'Referer': 'https://deepinfra.com/', 'Sec-Fetch-Dest': 'empty', 'Sec-Fetch-Mode': 'cors', 'Sec-Fetch-Site': 'same-site', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36', 'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"' } response = requests.request("POST", url, headers=headers, data=payload) return response.json()["embeddings"] except: pass def main(): # Check if the database should be cleared (using the --clear flag). parser = argparse.ArgumentParser() parser.add_argument("--reset", action="store_true", help="Reset the database.") args = parser.parse_args() if args.reset: print("✨ Clearing Database") clear_database() # Create (or update) the data store. documents = load_documents() chunks = split_documents(documents) add_to_chroma(chunks) def load_documents(): print("📚 Loading Documents") document_loader = PyPDFDirectoryLoader(DATA_PATH) return document_loader.load() def split_documents(documents: list[Document]): print("🔪 Splitting Documents") text_splitter = RecursiveCharacterTextSplitter( chunk_size=4000, chunk_overlap=100, length_function=len, is_separator_regex=True ) return text_splitter.split_documents(documents) def add_to_chroma(chunks: list[Document]): print("🔗 Adding to Chroma") # Load the existing database. custom_embeddings = MyEmbeddingFunction() db = Chroma( persist_directory=CHROMA_PATH, embedding_function=custom_embeddings ) # Calculate Page IDs. chunks_with_ids = calculate_chunk_ids(chunks) # Add or Update the documents. existing_items = db.get(include=[]) # IDs are always included by default existing_ids = set(existing_items["ids"]) print(f"Number of existing documents in DB: {len(existing_ids)}") # Only add documents that don't exist in the DB. new_chunks = [] for chunk in chunks_with_ids: if chunk.metadata["id"] not in existing_ids: new_chunks.append(chunk) if len(new_chunks): print(f"👉 Adding new documents: {len(new_chunks)}") new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] for i in range(0, len(new_chunks), 100): try: db.add_documents(new_chunks[i:i+100], ids=new_chunk_ids[i:i+100]) db.persist() print(f"Added {i+100} documents") except: pass else: print("✅ No new documents to add") def calculate_chunk_ids(chunks): last_page_id = None current_chunk_index = 0 for chunk in chunks: source = chunk.metadata.get("source") page = chunk.metadata.get("page") current_page_id = f"{source}:{page}" # If the page ID is the same as the last one, increment the index. if current_page_id == last_page_id: current_chunk_index += 1 else: current_chunk_index = 0 # Calculate the chunk ID. chunk_id = f"{current_page_id}:{current_chunk_index}" last_page_id = current_page_id # Add it to the page meta-data. chunk.metadata["id"] = chunk_id return chunks def clear_database(): if os.path.exists(CHROMA_PATH): shutil.rmtree(CHROMA_PATH) if __name__ == "__main__": main()