Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Conversion script for the AudioLDM2 checkpoints.""" | |
| import argparse | |
| import re | |
| from typing import List, Union | |
| import torch | |
| import yaml | |
| from transformers import ( | |
| AutoFeatureExtractor, | |
| AutoTokenizer, | |
| ClapConfig, | |
| ClapModel, | |
| GPT2Config, | |
| GPT2Model, | |
| SpeechT5HifiGan, | |
| SpeechT5HifiGanConfig, | |
| T5Config, | |
| T5EncoderModel, | |
| ) | |
| from diffusers import ( | |
| AudioLDM2Pipeline, | |
| AudioLDM2ProjectionModel, | |
| AudioLDM2UNet2DConditionModel, | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import is_safetensors_available | |
| from diffusers.utils.import_utils import BACKENDS_MAPPING | |
| # Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.shave_segments | |
| def shave_segments(path, n_shave_prefix_segments=1): | |
| """ | |
| Removes segments. Positive values shave the first segments, negative shave the last segments. | |
| """ | |
| if n_shave_prefix_segments >= 0: | |
| return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
| else: | |
| return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
| # Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_resnet_paths | |
| def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item.replace("in_layers.0", "norm1") | |
| new_item = new_item.replace("in_layers.2", "conv1") | |
| new_item = new_item.replace("out_layers.0", "norm2") | |
| new_item = new_item.replace("out_layers.3", "conv2") | |
| new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
| new_item = new_item.replace("skip_connection", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| # Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_vae_resnet_paths | |
| def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| # Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.renew_attention_paths | |
| def renew_attention_paths(old_list): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| # new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
| # new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
| # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
| # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
| # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("norm.weight", "group_norm.weight") | |
| new_item = new_item.replace("norm.bias", "group_norm.bias") | |
| new_item = new_item.replace("q.weight", "to_q.weight") | |
| new_item = new_item.replace("q.bias", "to_q.bias") | |
| new_item = new_item.replace("k.weight", "to_k.weight") | |
| new_item = new_item.replace("k.bias", "to_k.bias") | |
| new_item = new_item.replace("v.weight", "to_v.weight") | |
| new_item = new_item.replace("v.bias", "to_v.bias") | |
| new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
| new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
| new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def assign_to_checkpoint( | |
| paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None | |
| ): | |
| """ | |
| This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
| attention layers, and takes into account additional replacements that may arise. | |
| Assigns the weights to the new checkpoint. | |
| """ | |
| assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
| # Splits the attention layers into three variables. | |
| if attention_paths_to_split is not None: | |
| for path, path_map in attention_paths_to_split.items(): | |
| old_tensor = old_checkpoint[path] | |
| channels = old_tensor.shape[0] // 3 | |
| target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
| num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
| old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) | |
| query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
| checkpoint[path_map["query"]] = query.reshape(target_shape) | |
| checkpoint[path_map["key"]] = key.reshape(target_shape) | |
| checkpoint[path_map["value"]] = value.reshape(target_shape) | |
| for path in paths: | |
| new_path = path["new"] | |
| # These have already been assigned | |
| if attention_paths_to_split is not None and new_path in attention_paths_to_split: | |
| continue | |
| if additional_replacements is not None: | |
| for replacement in additional_replacements: | |
| new_path = new_path.replace(replacement["old"], replacement["new"]) | |
| # proj_attn.weight has to be converted from conv 1D to linear | |
| if "proj_attn.weight" in new_path: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
| else: | |
| checkpoint[new_path] = old_checkpoint[path["old"]] | |
| def conv_attn_to_linear(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"] | |
| proj_key = "to_out.0.weight" | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in attn_keys or ".".join(key.split(".")[-3:]) == proj_key: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key].squeeze() | |
| def create_unet_diffusers_config(original_config, image_size: int): | |
| """ | |
| Creates a UNet config for diffusers based on the config of the original AudioLDM2 model. | |
| """ | |
| unet_params = original_config["model"]["params"]["unet_config"]["params"] | |
| vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
| block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] | |
| down_block_types = [] | |
| resolution = 1 | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" | |
| down_block_types.append(block_type) | |
| if i != len(block_out_channels) - 1: | |
| resolution *= 2 | |
| up_block_types = [] | |
| for i in range(len(block_out_channels)): | |
| block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" | |
| up_block_types.append(block_type) | |
| resolution //= 2 | |
| vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) | |
| cross_attention_dim = list(unet_params["context_dim"]) if "context_dim" in unet_params else block_out_channels | |
| if len(cross_attention_dim) > 1: | |
| # require two or more cross-attention layers per-block, each of different dimension | |
| cross_attention_dim = [cross_attention_dim for _ in range(len(block_out_channels))] | |
| config = { | |
| "sample_size": image_size // vae_scale_factor, | |
| "in_channels": unet_params["in_channels"], | |
| "out_channels": unet_params["out_channels"], | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "layers_per_block": unet_params["num_res_blocks"], | |
| "transformer_layers_per_block": unet_params["transformer_depth"], | |
| "cross_attention_dim": tuple(cross_attention_dim), | |
| } | |
| return config | |
| # Adapted from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_vae_diffusers_config | |
| def create_vae_diffusers_config(original_config, checkpoint, image_size: int): | |
| """ | |
| Creates a VAE config for diffusers based on the config of the original AudioLDM2 model. Compared to the original | |
| Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE. | |
| """ | |
| vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] | |
| _ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"] | |
| block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] | |
| down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
| up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
| scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215 | |
| config = { | |
| "sample_size": image_size, | |
| "in_channels": vae_params["in_channels"], | |
| "out_channels": vae_params["out_ch"], | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "latent_channels": vae_params["z_channels"], | |
| "layers_per_block": vae_params["num_res_blocks"], | |
| "scaling_factor": float(scaling_factor), | |
| } | |
| return config | |
| # Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.create_diffusers_schedular | |
| def create_diffusers_schedular(original_config): | |
| schedular = DDIMScheduler( | |
| num_train_timesteps=original_config["model"]["params"]["timesteps"], | |
| beta_start=original_config["model"]["params"]["linear_start"], | |
| beta_end=original_config["model"]["params"]["linear_end"], | |
| beta_schedule="scaled_linear", | |
| ) | |
| return schedular | |
| def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): | |
| """ | |
| Takes a state dict and a config, and returns a converted UNet checkpoint. | |
| """ | |
| # extract state_dict for UNet | |
| unet_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| unet_key = "model.diffusion_model." | |
| # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
| if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
| print(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
| print( | |
| "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
| " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith("model.diffusion_model"): | |
| flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) | |
| else: | |
| if sum(k.startswith("model_ema") for k in keys) > 100: | |
| print( | |
| "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
| " weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
| ) | |
| # strip the unet prefix from the weight names | |
| for key in keys: | |
| if key.startswith(unet_key): | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) | |
| new_checkpoint = {} | |
| new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] | |
| new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] | |
| new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] | |
| new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] | |
| new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
| new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
| new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
| new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
| new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
| new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
| # Retrieves the keys for the input blocks only | |
| num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) | |
| input_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}." in key] | |
| for layer_id in range(num_input_blocks) | |
| } | |
| # Retrieves the keys for the middle blocks only | |
| num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) | |
| middle_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}." in key] | |
| for layer_id in range(num_middle_blocks) | |
| } | |
| # Retrieves the keys for the output blocks only | |
| num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) | |
| output_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}." in key] | |
| for layer_id in range(num_output_blocks) | |
| } | |
| # Check how many Transformer blocks we have per layer | |
| if isinstance(config.get("cross_attention_dim"), (list, tuple)): | |
| if isinstance(config["cross_attention_dim"][0], (list, tuple)): | |
| # in this case we have multiple cross-attention layers per-block | |
| num_attention_layers = len(config.get("cross_attention_dim")[0]) | |
| else: | |
| num_attention_layers = 1 | |
| if config.get("extra_self_attn_layer"): | |
| num_attention_layers += 1 | |
| for i in range(1, num_input_blocks): | |
| block_id = (i - 1) // (config["layers_per_block"] + 1) | |
| layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
| resnets = [ | |
| key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
| ] | |
| attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.0" not in key] | |
| if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.weight" | |
| ) | |
| new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( | |
| f"input_blocks.{i}.0.op.bias" | |
| ) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = [ | |
| { | |
| "old": f"input_blocks.{i}.{1 + layer_id}", | |
| "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}", | |
| } | |
| for layer_id in range(num_attention_layers) | |
| ] | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config | |
| ) | |
| resnet_0 = middle_blocks[0] | |
| resnet_1 = middle_blocks[num_middle_blocks - 1] | |
| resnet_0_paths = renew_resnet_paths(resnet_0) | |
| meta_path = {"old": "middle_block.0", "new": "mid_block.resnets.0"} | |
| assign_to_checkpoint( | |
| resnet_0_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| resnet_1_paths = renew_resnet_paths(resnet_1) | |
| meta_path = {"old": f"middle_block.{len(middle_blocks) - 1}", "new": "mid_block.resnets.1"} | |
| assign_to_checkpoint( | |
| resnet_1_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| for i in range(1, num_middle_blocks - 1): | |
| attentions = middle_blocks[i] | |
| attentions_paths = renew_attention_paths(attentions) | |
| meta_path = {"old": f"middle_block.{i}", "new": f"mid_block.attentions.{i - 1}"} | |
| assign_to_checkpoint( | |
| attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| for i in range(num_output_blocks): | |
| block_id = i // (config["layers_per_block"] + 1) | |
| layer_in_block_id = i % (config["layers_per_block"] + 1) | |
| output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
| output_block_list = {} | |
| for layer in output_block_layers: | |
| layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
| if layer_id in output_block_list: | |
| output_block_list[layer_id].append(layer_name) | |
| else: | |
| output_block_list[layer_id] = [layer_name] | |
| if len(output_block_list) > 1: | |
| resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
| attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.0" not in key] | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config | |
| ) | |
| output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
| if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
| index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.weight" | |
| ] | |
| new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ | |
| f"output_blocks.{i}.{index}.conv.bias" | |
| ] | |
| attentions.remove(f"output_blocks.{i}.{index}.conv.bias") | |
| attentions.remove(f"output_blocks.{i}.{index}.conv.weight") | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = [ | |
| { | |
| "old": f"output_blocks.{i}.{1 + layer_id}", | |
| "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id * num_attention_layers + layer_id}", | |
| } | |
| for layer_id in range(num_attention_layers) | |
| ] | |
| assign_to_checkpoint( | |
| paths, new_checkpoint, unet_state_dict, additional_replacements=meta_path, config=config | |
| ) | |
| else: | |
| resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) | |
| for path in resnet_0_paths: | |
| old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
| new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) | |
| new_checkpoint[new_path] = unet_state_dict[old_path] | |
| return new_checkpoint | |
| def convert_ldm_vae_checkpoint(checkpoint, config): | |
| # extract state dict for VAE | |
| vae_state_dict = {} | |
| vae_key = "first_stage_model." | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(vae_key): | |
| vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
| new_checkpoint = {} | |
| new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
| new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
| new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] | |
| new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
| new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] | |
| new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] | |
| new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
| new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
| new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] | |
| new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
| new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] | |
| new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] | |
| new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
| new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
| new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
| new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
| # Retrieves the keys for the encoder down blocks only | |
| num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) | |
| down_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) | |
| } | |
| # Retrieves the keys for the decoder up blocks only | |
| num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) | |
| up_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) | |
| } | |
| for i in range(num_down_blocks): | |
| resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] | |
| if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.weight" | |
| ) | |
| new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( | |
| f"encoder.down.{i}.downsample.conv.bias" | |
| ) | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| for i in range(num_up_blocks): | |
| block_id = num_up_blocks - 1 - i | |
| resnets = [ | |
| key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
| ] | |
| if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.weight" | |
| ] | |
| new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ | |
| f"decoder.up.{block_id}.upsample.conv.bias" | |
| ] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) | |
| conv_attn_to_linear(new_checkpoint) | |
| return new_checkpoint | |
| CLAP_KEYS_TO_MODIFY_MAPPING = { | |
| "text_branch": "text_model", | |
| "audio_branch": "audio_model.audio_encoder", | |
| "attn": "attention.self", | |
| "self.proj": "output.dense", | |
| "attention.self_mask": "attn_mask", | |
| "mlp.fc1": "intermediate.dense", | |
| "mlp.fc2": "output.dense", | |
| "norm1": "layernorm_before", | |
| "norm2": "layernorm_after", | |
| "bn0": "batch_norm", | |
| } | |
| CLAP_KEYS_TO_IGNORE = [ | |
| "text_transform", | |
| "audio_transform", | |
| "stft", | |
| "logmel_extractor", | |
| "tscam_conv", | |
| "head", | |
| "attn_mask", | |
| ] | |
| CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"] | |
| def convert_open_clap_checkpoint(checkpoint): | |
| """ | |
| Takes a state dict and returns a converted CLAP checkpoint. | |
| """ | |
| # extract state dict for CLAP text embedding model, discarding the audio component | |
| model_state_dict = {} | |
| model_key = "clap.model." | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(model_key): | |
| model_state_dict[key.replace(model_key, "")] = checkpoint.get(key) | |
| new_checkpoint = {} | |
| sequential_layers_pattern = r".*sequential.(\d+).*" | |
| text_projection_pattern = r".*_projection.(\d+).*" | |
| for key, value in model_state_dict.items(): | |
| # check if key should be ignored in mapping - if so map it to a key name that we'll filter out at the end | |
| for key_to_ignore in CLAP_KEYS_TO_IGNORE: | |
| if key_to_ignore in key: | |
| key = "spectrogram" | |
| # check if any key needs to be modified | |
| for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items(): | |
| if key_to_modify in key: | |
| key = key.replace(key_to_modify, new_key) | |
| if re.match(sequential_layers_pattern, key): | |
| # replace sequential layers with list | |
| sequential_layer = re.match(sequential_layers_pattern, key).group(1) | |
| key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.") | |
| elif re.match(text_projection_pattern, key): | |
| projecton_layer = int(re.match(text_projection_pattern, key).group(1)) | |
| # Because in CLAP they use `nn.Sequential`... | |
| transformers_projection_layer = 1 if projecton_layer == 0 else 2 | |
| key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.") | |
| if "audio" and "qkv" in key: | |
| # split qkv into query key and value | |
| mixed_qkv = value | |
| qkv_dim = mixed_qkv.size(0) // 3 | |
| query_layer = mixed_qkv[:qkv_dim] | |
| key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] | |
| value_layer = mixed_qkv[qkv_dim * 2 :] | |
| new_checkpoint[key.replace("qkv", "query")] = query_layer | |
| new_checkpoint[key.replace("qkv", "key")] = key_layer | |
| new_checkpoint[key.replace("qkv", "value")] = value_layer | |
| elif key != "spectrogram": | |
| new_checkpoint[key] = value | |
| return new_checkpoint | |
| def create_transformers_vocoder_config(original_config): | |
| """ | |
| Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model. | |
| """ | |
| vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"] | |
| config = { | |
| "model_in_dim": vocoder_params["num_mels"], | |
| "sampling_rate": vocoder_params["sampling_rate"], | |
| "upsample_initial_channel": vocoder_params["upsample_initial_channel"], | |
| "upsample_rates": list(vocoder_params["upsample_rates"]), | |
| "upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]), | |
| "resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]), | |
| "resblock_dilation_sizes": [ | |
| list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"] | |
| ], | |
| "normalize_before": False, | |
| } | |
| return config | |
| def extract_sub_model(checkpoint, key_prefix): | |
| """ | |
| Takes a state dict and returns the state dict for a particular sub-model. | |
| """ | |
| sub_model_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(key_prefix): | |
| sub_model_state_dict[key.replace(key_prefix, "")] = checkpoint.get(key) | |
| return sub_model_state_dict | |
| def convert_hifigan_checkpoint(checkpoint, config): | |
| """ | |
| Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint. | |
| """ | |
| # extract state dict for vocoder | |
| vocoder_state_dict = extract_sub_model(checkpoint, key_prefix="first_stage_model.vocoder.") | |
| # fix upsampler keys, everything else is correct already | |
| for i in range(len(config.upsample_rates)): | |
| vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight") | |
| vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias") | |
| if not config.normalize_before: | |
| # if we don't set normalize_before then these variables are unused, so we set them to their initialised values | |
| vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim) | |
| vocoder_state_dict["scale"] = torch.ones(config.model_in_dim) | |
| return vocoder_state_dict | |
| def convert_projection_checkpoint(checkpoint): | |
| projection_state_dict = {} | |
| conditioner_state_dict = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.") | |
| projection_state_dict["sos_embed"] = conditioner_state_dict["start_of_sequence_tokens.weight"][0] | |
| projection_state_dict["sos_embed_1"] = conditioner_state_dict["start_of_sequence_tokens.weight"][1] | |
| projection_state_dict["eos_embed"] = conditioner_state_dict["end_of_sequence_tokens.weight"][0] | |
| projection_state_dict["eos_embed_1"] = conditioner_state_dict["end_of_sequence_tokens.weight"][1] | |
| projection_state_dict["projection.weight"] = conditioner_state_dict["input_sequence_embed_linear.0.weight"] | |
| projection_state_dict["projection.bias"] = conditioner_state_dict["input_sequence_embed_linear.0.bias"] | |
| projection_state_dict["projection_1.weight"] = conditioner_state_dict["input_sequence_embed_linear.1.weight"] | |
| projection_state_dict["projection_1.bias"] = conditioner_state_dict["input_sequence_embed_linear.1.bias"] | |
| return projection_state_dict | |
| # Adapted from https://github.com/haoheliu/AudioLDM2/blob/81ad2c6ce015c1310387695e2dae975a7d2ed6fd/audioldm2/utils.py#L143 | |
| DEFAULT_CONFIG = { | |
| "model": { | |
| "params": { | |
| "linear_start": 0.0015, | |
| "linear_end": 0.0195, | |
| "timesteps": 1000, | |
| "channels": 8, | |
| "scale_by_std": True, | |
| "unet_config": { | |
| "target": "audioldm2.latent_diffusion.openaimodel.UNetModel", | |
| "params": { | |
| "context_dim": [None, 768, 1024], | |
| "in_channels": 8, | |
| "out_channels": 8, | |
| "model_channels": 128, | |
| "attention_resolutions": [8, 4, 2], | |
| "num_res_blocks": 2, | |
| "channel_mult": [1, 2, 3, 5], | |
| "num_head_channels": 32, | |
| "transformer_depth": 1, | |
| }, | |
| }, | |
| "first_stage_config": { | |
| "target": "audioldm2.variational_autoencoder.autoencoder.AutoencoderKL", | |
| "params": { | |
| "embed_dim": 8, | |
| "ddconfig": { | |
| "z_channels": 8, | |
| "resolution": 256, | |
| "in_channels": 1, | |
| "out_ch": 1, | |
| "ch": 128, | |
| "ch_mult": [1, 2, 4], | |
| "num_res_blocks": 2, | |
| }, | |
| }, | |
| }, | |
| "cond_stage_config": { | |
| "crossattn_audiomae_generated": { | |
| "target": "audioldm2.latent_diffusion.modules.encoders.modules.SequenceGenAudioMAECond", | |
| "params": { | |
| "sequence_gen_length": 8, | |
| "sequence_input_embed_dim": [512, 1024], | |
| }, | |
| } | |
| }, | |
| "vocoder_config": { | |
| "target": "audioldm2.first_stage_model.vocoder", | |
| "params": { | |
| "upsample_rates": [5, 4, 2, 2, 2], | |
| "upsample_kernel_sizes": [16, 16, 8, 4, 4], | |
| "upsample_initial_channel": 1024, | |
| "resblock_kernel_sizes": [3, 7, 11], | |
| "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| "num_mels": 64, | |
| "sampling_rate": 16000, | |
| }, | |
| }, | |
| }, | |
| }, | |
| } | |
| def load_pipeline_from_original_AudioLDM2_ckpt( | |
| checkpoint_path: str, | |
| original_config_file: str = None, | |
| image_size: int = 1024, | |
| prediction_type: str = None, | |
| extract_ema: bool = False, | |
| scheduler_type: str = "ddim", | |
| cross_attention_dim: Union[List, List[List]] = None, | |
| transformer_layers_per_block: int = None, | |
| device: str = None, | |
| from_safetensors: bool = False, | |
| ) -> AudioLDM2Pipeline: | |
| """ | |
| Load an AudioLDM2 pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file. | |
| Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the | |
| global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is | |
| recommended that you override the default values and/or supply an `original_config_file` wherever possible. | |
| Args: | |
| checkpoint_path (`str`): Path to `.ckpt` file. | |
| original_config_file (`str`): | |
| Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically | |
| set to the AudioLDM2 base config. | |
| image_size (`int`, *optional*, defaults to 1024): | |
| The image size that the model was trained on. | |
| prediction_type (`str`, *optional*): | |
| The prediction type that the model was trained on. If `None`, will be automatically | |
| inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`. | |
| scheduler_type (`str`, *optional*, defaults to 'ddim'): | |
| Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", | |
| "ddim"]`. | |
| cross_attention_dim (`list`, *optional*, defaults to `None`): | |
| The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be | |
| automatically inferred. Set to `[768, 1024]` for the base model, or `[768, 1024, None]` for the large model. | |
| transformer_layers_per_block (`int`, *optional*, defaults to `None`): | |
| The number of transformer layers in each transformer block. If `None`, number of layers will be " | |
| "automatically inferred. Set to `1` for the base model, or `2` for the large model. | |
| extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for | |
| checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to | |
| `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for | |
| inference. Non-EMA weights are usually better to continue fine-tuning. | |
| device (`str`, *optional*, defaults to `None`): | |
| The device to use. Pass `None` to determine automatically. | |
| from_safetensors (`str`, *optional*, defaults to `False`): | |
| If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch. | |
| return: An AudioLDM2Pipeline object representing the passed-in `.ckpt`/`.safetensors` file. | |
| """ | |
| if from_safetensors: | |
| if not is_safetensors_available(): | |
| raise ValueError(BACKENDS_MAPPING["safetensors"][1]) | |
| from safetensors import safe_open | |
| checkpoint = {} | |
| with safe_open(checkpoint_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| checkpoint[key] = f.get_tensor(key) | |
| else: | |
| if device is None: | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| checkpoint = torch.load(checkpoint_path, map_location=device) | |
| else: | |
| checkpoint = torch.load(checkpoint_path, map_location=device) | |
| if "state_dict" in checkpoint: | |
| checkpoint = checkpoint["state_dict"] | |
| if original_config_file is None: | |
| original_config = DEFAULT_CONFIG | |
| else: | |
| original_config = yaml.safe_load(original_config_file) | |
| if image_size is not None: | |
| original_config["model"]["params"]["unet_config"]["params"]["image_size"] = image_size | |
| if cross_attention_dim is not None: | |
| original_config["model"]["params"]["unet_config"]["params"]["context_dim"] = cross_attention_dim | |
| if transformer_layers_per_block is not None: | |
| original_config["model"]["params"]["unet_config"]["params"]["transformer_depth"] = transformer_layers_per_block | |
| if ( | |
| "parameterization" in original_config["model"]["params"] | |
| and original_config["model"]["params"]["parameterization"] == "v" | |
| ): | |
| if prediction_type is None: | |
| prediction_type = "v_prediction" | |
| else: | |
| if prediction_type is None: | |
| prediction_type = "epsilon" | |
| num_train_timesteps = original_config["model"]["params"]["timesteps"] | |
| beta_start = original_config["model"]["params"]["linear_start"] | |
| beta_end = original_config["model"]["params"]["linear_end"] | |
| scheduler = DDIMScheduler( | |
| beta_end=beta_end, | |
| beta_schedule="scaled_linear", | |
| beta_start=beta_start, | |
| num_train_timesteps=num_train_timesteps, | |
| steps_offset=1, | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| prediction_type=prediction_type, | |
| ) | |
| # make sure scheduler works correctly with DDIM | |
| scheduler.register_to_config(clip_sample=False) | |
| if scheduler_type == "pndm": | |
| config = dict(scheduler.config) | |
| config["skip_prk_steps"] = True | |
| scheduler = PNDMScheduler.from_config(config) | |
| elif scheduler_type == "lms": | |
| scheduler = LMSDiscreteScheduler.from_config(scheduler.config) | |
| elif scheduler_type == "heun": | |
| scheduler = HeunDiscreteScheduler.from_config(scheduler.config) | |
| elif scheduler_type == "euler": | |
| scheduler = EulerDiscreteScheduler.from_config(scheduler.config) | |
| elif scheduler_type == "euler-ancestral": | |
| scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) | |
| elif scheduler_type == "dpm": | |
| scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) | |
| elif scheduler_type == "ddim": | |
| scheduler = scheduler | |
| else: | |
| raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") | |
| # Convert the UNet2DModel | |
| unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
| unet = AudioLDM2UNet2DConditionModel(**unet_config) | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
| checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema | |
| ) | |
| unet.load_state_dict(converted_unet_checkpoint) | |
| # Convert the VAE model | |
| vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size) | |
| converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
| vae = AutoencoderKL(**vae_config) | |
| vae.load_state_dict(converted_vae_checkpoint) | |
| # Convert the joint audio-text encoding model | |
| clap_config = ClapConfig.from_pretrained("laion/clap-htsat-unfused") | |
| clap_config.audio_config.update( | |
| { | |
| "patch_embeds_hidden_size": 128, | |
| "hidden_size": 1024, | |
| "depths": [2, 2, 12, 2], | |
| } | |
| ) | |
| # AudioLDM2 uses the same tokenizer and feature extractor as the original CLAP model | |
| clap_tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") | |
| clap_feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") | |
| converted_clap_model = convert_open_clap_checkpoint(checkpoint) | |
| clap_model = ClapModel(clap_config) | |
| missing_keys, unexpected_keys = clap_model.load_state_dict(converted_clap_model, strict=False) | |
| # we expect not to have token_type_ids in our original state dict so let's ignore them | |
| missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS)) | |
| if len(unexpected_keys) > 0: | |
| raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}") | |
| if len(missing_keys) > 0: | |
| raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}") | |
| # Convert the vocoder model | |
| vocoder_config = create_transformers_vocoder_config(original_config) | |
| vocoder_config = SpeechT5HifiGanConfig(**vocoder_config) | |
| converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config) | |
| vocoder = SpeechT5HifiGan(vocoder_config) | |
| vocoder.load_state_dict(converted_vocoder_checkpoint) | |
| # Convert the Flan-T5 encoder model: AudioLDM2 uses the same configuration and tokenizer as the original Flan-T5 large model | |
| t5_config = T5Config.from_pretrained("google/flan-t5-large") | |
| converted_t5_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.1.model.") | |
| t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
| # hard-coded in the original implementation (i.e. not retrievable from the config) | |
| t5_tokenizer.model_max_length = 128 | |
| t5_model = T5EncoderModel(t5_config) | |
| t5_model.load_state_dict(converted_t5_checkpoint) | |
| # Convert the GPT2 encoder model: AudioLDM2 uses the same configuration as the original GPT2 base model | |
| gpt2_config = GPT2Config.from_pretrained("gpt2") | |
| gpt2_model = GPT2Model(gpt2_config) | |
| gpt2_model.config.max_new_tokens = original_config["model"]["params"]["cond_stage_config"][ | |
| "crossattn_audiomae_generated" | |
| ]["params"]["sequence_gen_length"] | |
| converted_gpt2_checkpoint = extract_sub_model(checkpoint, key_prefix="cond_stage_models.0.model.") | |
| gpt2_model.load_state_dict(converted_gpt2_checkpoint) | |
| # Convert the extra embedding / projection layers | |
| projection_model = AudioLDM2ProjectionModel(clap_config.projection_dim, t5_config.d_model, gpt2_config.n_embd) | |
| converted_projection_checkpoint = convert_projection_checkpoint(checkpoint) | |
| projection_model.load_state_dict(converted_projection_checkpoint) | |
| # Instantiate the diffusers pipeline | |
| pipe = AudioLDM2Pipeline( | |
| vae=vae, | |
| text_encoder=clap_model, | |
| text_encoder_2=t5_model, | |
| projection_model=projection_model, | |
| language_model=gpt2_model, | |
| tokenizer=clap_tokenizer, | |
| tokenizer_2=t5_tokenizer, | |
| feature_extractor=clap_feature_extractor, | |
| unet=unet, | |
| scheduler=scheduler, | |
| vocoder=vocoder, | |
| ) | |
| return pipe | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." | |
| ) | |
| parser.add_argument( | |
| "--original_config_file", | |
| default=None, | |
| type=str, | |
| help="The YAML config file corresponding to the original architecture.", | |
| ) | |
| parser.add_argument( | |
| "--cross_attention_dim", | |
| default=None, | |
| type=int, | |
| nargs="+", | |
| help="The dimension of the cross-attention layers. If `None`, the cross-attention dimension will be " | |
| "automatically inferred. Set to `768+1024` for the base model, or `768+1024+640` for the large model", | |
| ) | |
| parser.add_argument( | |
| "--transformer_layers_per_block", | |
| default=None, | |
| type=int, | |
| help="The number of transformer layers in each transformer block. If `None`, number of layers will be " | |
| "automatically inferred. Set to `1` for the base model, or `2` for the large model.", | |
| ) | |
| parser.add_argument( | |
| "--scheduler_type", | |
| default="ddim", | |
| type=str, | |
| help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", | |
| ) | |
| parser.add_argument( | |
| "--image_size", | |
| default=1048, | |
| type=int, | |
| help="The image size that the model was trained on.", | |
| ) | |
| parser.add_argument( | |
| "--prediction_type", | |
| default=None, | |
| type=str, | |
| help=("The prediction type that the model was trained on."), | |
| ) | |
| parser.add_argument( | |
| "--extract_ema", | |
| action="store_true", | |
| help=( | |
| "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
| " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
| " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--from_safetensors", | |
| action="store_true", | |
| help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", | |
| ) | |
| parser.add_argument( | |
| "--to_safetensors", | |
| action="store_true", | |
| help="Whether to store pipeline in safetensors format or not.", | |
| ) | |
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") | |
| parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") | |
| args = parser.parse_args() | |
| pipe = load_pipeline_from_original_AudioLDM2_ckpt( | |
| checkpoint_path=args.checkpoint_path, | |
| original_config_file=args.original_config_file, | |
| image_size=args.image_size, | |
| prediction_type=args.prediction_type, | |
| extract_ema=args.extract_ema, | |
| scheduler_type=args.scheduler_type, | |
| cross_attention_dim=args.cross_attention_dim, | |
| transformer_layers_per_block=args.transformer_layers_per_block, | |
| from_safetensors=args.from_safetensors, | |
| device=args.device, | |
| ) | |
| pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |