from transformers import CLIPProcessor, CLIPModel, ViTImageProcessor, ViTModel from PIL import Image from sklearn.metrics.pairwise import cosine_similarity from warnings import filterwarnings filterwarnings("ignore") models = ["CLIP-ViT Base", "ViT Base", "DINO ViT-S16"] models_info = { "CLIP-ViT Base": { "model_size": "386MB", "model_url": "openai/clip-vit-base-patch32", "efficiency": "High", }, "ViT Base": { "model_size": "304MB", "model_url": "google/vit-base-patch16-224", "efficiency": "High", }, "DINO ViT-S16": { "model_size": "1.34GB", "model_url": "facebook/dino-vits16", "efficiency": "Moderate", }, } class Image_Validator: def __init__(self, model_name=None): if model_name is None: model_name="ViT Base" self.model_info = models_info[model_name] model_url = self.model_info["model_url"] if model_name == "CLIP-ViT Base": self.model = CLIPModel.from_pretrained(model_url) self.processor = CLIPProcessor.from_pretrained(model_url) elif model_name == "ViT Base": self.model = ViTModel.from_pretrained(model_url) self.feature_extractor = ViTImageProcessor.from_pretrained(model_url) elif model_name == "DINO ViT-S16": self.model = ViTModel.from_pretrained(model_url) self.feature_extractor = ViTImageProcessor.from_pretrained(model_url) def get_image_embedding(self, image_path): image = Image.open(image_path) # Process image according to the model if hasattr(self, 'processor'): # CLIP models inputs = self.processor(images=image, return_tensors="pt") outputs = self.model.get_image_features(**inputs) elif hasattr(self, 'feature_extractor'): # ViT models inputs = self.feature_extractor(images=image, return_tensors="pt") outputs = self.model(**inputs).last_hidden_state return outputs def similarity_score(self, image_path_1, image_path_2): embedding1 = self.get_image_embedding(image_path_1).reshape(1, -1) embedding2 = self.get_image_embedding(image_path_2).reshape(1, -1) similarity = cosine_similarity(embedding1.detach().numpy(), embedding2.detach().numpy()) return similarity[0][0]