import json from ultralytics import YOLO # Load a model model = YOLO('best_300.pt') # load an official model # model = YOLO('path/to/best_300.pt') # load a custom model # Predict with the model # results = model.predict(source='pCard3', save=True, save_txt=True,project="playing_card",name="predict") _boxes = [] results = model.predict(source='pCard3/1.jpg', save=True, save_txt=True, project="playing_card", name="predict") # results = model('https://cdn.britannica.com/23/194523-050-E6C02DBE/selection-American-playing-cards-jack-queen-ace.jpg') for result in results: r = result.numpy() names = r.names boxes = r.boxes for box in boxes: b = box.xywh[0].tolist() # get box coordinates in (top, left, bottom, right) format c = int(box.cls[0]) cf = float(box.conf[0]) n = names[c] _boxes.append({ "label": c, 'name': n, 'probability': cf, 'bounding': b }) j = json.dumps(_boxes) print(_boxes)