{ "cells": [ { "cell_type": "markdown", "id": "62c5865f", "metadata": {}, "source": [ "\"Open" ] }, { "cell_type": "code", "execution_count": null, "id": "6c7800a6", "metadata": {}, "outputs": [], "source": [ "try:\n", " # are we running on Google Colab?\n", " import google.colab\n", " !git clone -q https://github.com/teticio/audio-diffusion.git\n", " %cd audio-diffusion\n", " !pip install -q -r requirements.txt\n", "except:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "id": "b447e2c4", "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.insert(0, os.path.dirname(os.path.abspath(\"\")))" ] }, { "cell_type": "code", "execution_count": null, "id": "c2fc0e7a", "metadata": {}, "outputs": [], "source": [ "import torch\n", "import random\n", "import numpy as np\n", "from datasets import load_dataset\n", "from IPython.display import Audio\n", "from audiodiffusion.mel import Mel\n", "from audiodiffusion import AudioDiffusion" ] }, { "cell_type": "code", "execution_count": null, "id": "b294a94a", "metadata": {}, "outputs": [], "source": [ "mel = Mel(x_res=256, y_res=256)\n", "generator = torch.Generator()" ] }, { "cell_type": "markdown", "id": "f3feb265", "metadata": {}, "source": [ "## DDPM (De-noising Diffusion Probabilistic Models)" ] }, { "cell_type": "markdown", "id": "7fd945bb", "metadata": {}, "source": [ "### Select model" ] }, { "cell_type": "code", "execution_count": null, "id": "97f24046", "metadata": {}, "outputs": [], "source": [ "#@markdown teticio/audio-diffusion-256 - trained on my Spotify \"liked\" playlist\n", "\n", "#@markdown teticio/audio-diffusion-breaks-256 - trained on samples used in music\n", "\n", "#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n", "\n", "model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\", \"teticio/audio-diffusion-ddim-256\"]" ] }, { "cell_type": "code", "execution_count": null, "id": "a3d45c36", "metadata": {}, "outputs": [], "source": [ "audio_diffusion = AudioDiffusion(model_id=model_id)" ] }, { "cell_type": "markdown", "id": "011fb5a1", "metadata": {}, "source": [ "### Run model inference to generate mel spectrogram, audios and loops" ] }, { "cell_type": "code", "execution_count": null, "id": "b809fed5", "metadata": {}, "outputs": [], "source": [ "for _ in range(10):\n", " seed = generator.seed()\n", " print(f'Seed = {seed}')\n", " generator.manual_seed(seed)\n", " image, (sample_rate,\n", " audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " generator=generator)\n", " display(image)\n", " display(Audio(audio, rate=sample_rate))\n", " loop = AudioDiffusion.loop_it(audio, sample_rate)\n", " if loop is not None:\n", " display(Audio(loop, rate=sample_rate))\n", " else:\n", " print(\"Unable to determine loop points\")" ] }, { "cell_type": "markdown", "id": "0bb03e33", "metadata": {}, "source": [ "### Generate variations of audios" ] }, { "cell_type": "markdown", "id": "80e5b5fa", "metadata": {}, "source": [ "Try playing around with `start_steps`. Values closer to zero will produce new samples, while values closer to 1,000 will produce samples more faithful to the original." ] }, { "cell_type": "code", "execution_count": null, "id": "5074ec11", "metadata": {}, "outputs": [], "source": [ "seed = 16183389798189209330 #@param {type:\"integer\"}\n", "generator.manual_seed(seed)\n", "image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " generator=generator)\n", "display(image)\n", "display(Audio(audio, rate=sample_rate))" ] }, { "cell_type": "code", "execution_count": null, "id": "a0fefe28", "metadata": { "scrolled": false }, "outputs": [], "source": [ "start_steps = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n", "track = AudioDiffusion.loop_it(audio, sample_rate, loops=1)\n", "for variation in range(12):\n", " image2, (\n", " sample_rate,\n", " audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " raw_audio=audio, start_step=start_steps)\n", " display(image2)\n", " display(Audio(audio2, rate=sample_rate))\n", " track = np.concatenate(\n", " [track, AudioDiffusion.loop_it(audio2, sample_rate, loops=1)])\n", "display(Audio(track, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "58a876c1", "metadata": {}, "source": [ "### Generate continuations (\"out-painting\")" ] }, { "cell_type": "code", "execution_count": null, "id": "b95d5780", "metadata": {}, "outputs": [], "source": [ "overlap_secs = 2 #@param {type:\"integer\"}\n", "start_step = 0 #@param {type:\"slider\", min:0, max:1000, step:10}\n", "overlap_samples = overlap_secs * sample_rate\n", "track = audio\n", "for variation in range(12):\n", " image2, (\n", " sample_rate,\n", " audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " raw_audio=audio[-overlap_samples:],\n", " start_step=start_step,\n", " mask_start_secs=overlap_secs)\n", " display(image2)\n", " display(Audio(audio2, rate=sample_rate))\n", " track = np.concatenate([track, audio2[overlap_samples:]])\n", " audio = audio2\n", "display(Audio(track, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "b6434d3f", "metadata": {}, "source": [ "### Remix (style transfer)" ] }, { "cell_type": "markdown", "id": "0da030b2", "metadata": {}, "source": [ "Alternatively, you can start from another audio altogether, resulting in a kind of style transfer. Maintaining the same seed during generation fixes the style, while masking helps stitch consecutive segments together more smoothly." ] }, { "cell_type": "code", "execution_count": null, "id": "fc620a80", "metadata": {}, "outputs": [], "source": [ "try:\n", " # are we running on Google Colab?\n", " from google.colab import files\n", " audio_file = list(files.upload().keys())[0]\n", "except:\n", " audio_file = \"/home/teticio/Music/liked/El Michels Affair - Glaciers Of Ice.mp3\"" ] }, { "cell_type": "code", "execution_count": null, "id": "5a257e69", "metadata": { "scrolled": false }, "outputs": [], "source": [ "start_step = 500 #@param {type:\"slider\", min:0, max:1000, step:10}\n", "overlap_secs = 2 #@param {type:\"integer\"}\n", "mel.load_audio(audio_file)\n", "overlap_samples = overlap_secs * mel.get_sample_rate()\n", "slice_size = mel.x_res * mel.hop_length\n", "stride = slice_size - overlap_samples\n", "generator = torch.Generator()\n", "seed = generator.seed()\n", "print(f'Seed = {seed}')\n", "track = np.array([])\n", "not_first = 0\n", "for sample in range(len(mel.audio) // stride):\n", " generator.manual_seed(seed)\n", " audio = np.array(mel.audio[sample * stride:sample * stride + slice_size])\n", " if not_first:\n", " # Normalize and re-insert generated audio\n", " audio[:overlap_samples] = audio2[-overlap_samples:] * np.max(\n", " audio[:overlap_samples]) / np.max(audio2[-overlap_samples:])\n", " _, (sample_rate,\n", " audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " raw_audio=audio,\n", " start_step=start_step,\n", " generator=generator,\n", " mask_start_secs=overlap_secs * not_first)\n", " track = np.concatenate([track, audio2[overlap_samples * not_first:]])\n", " not_first = 1\n", " display(Audio(track, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "924ff9d5", "metadata": {}, "source": [ "### Fill the gap (\"in-painting\")" ] }, { "cell_type": "code", "execution_count": null, "id": "0200264c", "metadata": {}, "outputs": [], "source": [ "slice = 3 #@param {type:\"integer\"}\n", "audio = mel.get_audio_slice(slice)\n", "_, (sample_rate,\n", " audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n", " raw_audio=mel.get_audio_slice(slice),\n", " mask_start_secs=1,\n", " mask_end_secs=1,\n", " step_generator=torch.Generator())\n", "display(Audio(audio, rate=sample_rate))\n", "display(Audio(audio2, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "efc32dae", "metadata": {}, "source": [ "## DDIM (De-noising Diffusion Implicit Models)" ] }, { "cell_type": "code", "execution_count": null, "id": "a021f78a", "metadata": {}, "outputs": [], "source": [ "audio_diffusion = AudioDiffusion(model_id='teticio/audio-diffusion-ddim-256')" ] }, { "cell_type": "markdown", "id": "deb23339", "metadata": {}, "source": [ "### Generation can be done in many fewer steps with DDIMs" ] }, { "cell_type": "code", "execution_count": null, "id": "c105a497", "metadata": {}, "outputs": [], "source": [ "for _ in range(10):\n", " seed = generator.seed()\n", " print(f'Seed = {seed}')\n", " generator.manual_seed(seed)\n", " image, (sample_rate,\n", " audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " generator=generator)\n", " display(image)\n", " display(Audio(audio, rate=sample_rate))\n", " loop = AudioDiffusion.loop_it(audio, sample_rate)\n", " if loop is not None:\n", " display(Audio(loop, rate=sample_rate))\n", " else:\n", " print(\"Unable to determine loop points\")" ] }, { "cell_type": "markdown", "id": "cab4692c", "metadata": {}, "source": [ "The parameter eta controls the variance:\n", "* 0 - DDIM (deterministic)\n", "* 1 - DDPM (De-noising Diffusion Probabilistic Model)" ] }, { "cell_type": "code", "execution_count": null, "id": "72bdd207", "metadata": {}, "outputs": [], "source": [ "image, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " steps=1000, generator=generator, eta=1)\n", "display(image)\n", "display(Audio(audio, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "b8d5442c", "metadata": {}, "source": [ "### DDIMs can be used as encoders..." ] }, { "cell_type": "code", "execution_count": null, "id": "269ee816", "metadata": {}, "outputs": [], "source": [ "# Doesn't have to be an audio from the train dataset, this is just for convenience\n", "ds = load_dataset('teticio/audio-diffusion-256')" ] }, { "cell_type": "code", "execution_count": null, "id": "278d1d80", "metadata": {}, "outputs": [], "source": [ "image = ds['train'][264]['image']\n", "display(Audio(mel.image_to_audio(image), rate=mel.get_sample_rate()))" ] }, { "cell_type": "code", "execution_count": null, "id": "912b54e4", "metadata": {}, "outputs": [], "source": [ "noise = audio_diffusion.pipe.encode([image])" ] }, { "cell_type": "code", "execution_count": null, "id": "c7b31f97", "metadata": {}, "outputs": [], "source": [ "# Reconstruct original audio from noise\n", "_, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " noise=noise, generator=generator)\n", "display(Audio(audio, rate=sample_rate))" ] }, { "cell_type": "markdown", "id": "998c776b", "metadata": {}, "source": [ "### ...or to interpolate between audios" ] }, { "cell_type": "code", "execution_count": null, "id": "33f82367", "metadata": {}, "outputs": [], "source": [ "image2 = ds['train'][15978]['image']\n", "display(Audio(mel.image_to_audio(image2), rate=mel.get_sample_rate()))" ] }, { "cell_type": "code", "execution_count": null, "id": "f93fb6c0", "metadata": {}, "outputs": [], "source": [ "noise2 = audio_diffusion.pipe.encode([image2], steps=1000)" ] }, { "cell_type": "code", "execution_count": null, "id": "a4190563", "metadata": {}, "outputs": [], "source": [ "alpha = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.1}\n", "_, (sample_rate, audio) = audio_diffusion.generate_spectrogram_and_audio(\n", " noise=audio_diffusion.pipe.slerp(noise, noise2, alpha),\n", " generator=generator)\n", "display(Audio(mel.image_to_audio(image), rate=mel.get_sample_rate()))\n", "display(Audio(mel.image_to_audio(image2), rate=mel.get_sample_rate()))\n", "display(Audio(audio, rate=sample_rate))" ] }, { "cell_type": "code", "execution_count": null, "id": "0b05539f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "huggingface", "language": "python", "name": "huggingface" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.9 (default, Apr 13 2022, 08:48:06) \n[Clang 13.1.6 (clang-1316.0.21.2.5)]" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 5 }