import requests
from bs4 import BeautifulSoup
import gradio as gr
from langchain.docstore.document import Document
from langchain.chains.question_answering import load_qa_chain
# from langchain.llms import HuggingFaceHub
from transformers import pipeline
from langchain.llms import HuggingFacePipeline
from langchain.chains.question_answering import load_qa_chain
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from langdetect import detect
import json
import os
import numpy as np
import time
# --------------------------
# Configurable Parameters
# --------------------------
CHUNK_SIZE = 500 # number of words per chunk
SIMILARITY_THRESHOLD = 0.3 # fallback threshold if similarity is too low
# Translation pipelines
# Translation to Russian (for queries not in Russian)
# translate_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-multi-en-ru")
translate_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
# RU->EN for English queries
translate_ru_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
# Russian Language Model for QA
#llm = HuggingFaceHub(repo_id="DeepPavlov/rubert-base-cased", model_kwargs={"temperature": 0})
# Create a QA pipeline using the DeepPavlov model directly
qa_pipeline = pipeline(
"question-answering",
model="DeepPavlov/rubert-base-cased",
tokenizer="DeepPavlov/rubert-base-cased"
)
llm = HuggingFacePipeline(pipeline=qa_pipeline)
qa_chain = load_qa_chain(llm, chain_type="stuff")
# Embedding Model
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Global cache
last_update_time = None
structured_chunks = [] # Will store tuples: (section_title, chunk_text)
chunk_embeddings = None
original_language = "ru" # default language for knowledge base (Russian)
# --------------------------
# Utility Functions
# --------------------------
def chunk_text(text, chunk_size=CHUNK_SIZE):
"""Split a text into chunks of approximately chunk_size words."""
words = text.split()
chunks = []
for i in range(0, len(words), chunk_size):
chunk = " ".join(words[i:i+chunk_size])
chunks.append(chunk)
return chunks
def fetch_and_structure_content(url):
global structured_chunks, chunk_embeddings, last_update_time
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Extract content under
tags
structured_sections = {}
for section in soup.find_all("h3"):
section_title = section.get_text(strip=True)
section_content = []
for sibling in section.find_next_siblings():
if sibling.name == "h3":
break
text = sibling.get_text(strip=True)
if text:
section_content.append(text)
full_section_text = " ".join(section_content).strip()
if full_section_text:
structured_sections[section_title] = full_section_text
# Chunking each section to improve retrieval granularity
structured_chunks = []
for title, content in structured_sections.items():
section_chunks = chunk_text(content, CHUNK_SIZE)
for idx, ch in enumerate(section_chunks):
# Store (title, chunk_text)
structured_chunks.append((f"{title} - part {idx+1}", ch))
# Precompute embeddings
chunk_texts = [ch[1] for ch in structured_chunks]
chunk_embeddings = embedding_model.encode(chunk_texts)
# Save structured chunks and embeddings
with open("knowledge_base.json", "w", encoding="utf-8") as f:
json.dump(structured_chunks, f, ensure_ascii=False)
np.save("embeddings.npy", chunk_embeddings)
last_update_time = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime())
return "Knowledge base successfully updated and structured!"
except Exception as e:
return f"Error fetching or structuring content: {str(e)}"
# Load from cache if available
if os.path.exists("knowledge_base.json") and os.path.exists("embeddings.npy"):
with open("knowledge_base.json", "r", encoding="utf-8") as f:
structured_chunks = json.load(f)
chunk_embeddings = np.load("embeddings.npy")
def detect_language(query):
try:
lang = detect(query)
return lang
except:
return "unknown"
def translate_answer_back(result_in_russian, original_lang):
"""Translate the Russian answer back to the original language if possible.
- If original is 'ru': return as is.
- If original is 'en': RU->EN
- Otherwise: fallback to English for now.
"""
if original_lang == "ru":
return result_in_russian
elif original_lang == "en":
return translate_ru_to_en(result_in_russian)[0]["translation_text"]
else:
# For other languages, a more complex approach would be needed.
# As a simple fallback, translate to English.
# (Future improvement: Add a dictionary of available RU->XX models)
return translate_ru_to_en(result_in_russian)[0]["translation_text"]
def chatbot(query):
global structured_chunks, chunk_embeddings
if not structured_chunks or chunk_embeddings is None:
return "Knowledge base is empty or not loaded. Please run an update."
# Detect query language
query_language = detect_language(query)
if query_language == "unknown":
return "Unable to detect the query language. Please try again, or specify your language."
# Translate query to Russian if needed
if query_language != "ru":
# Translate the query into Russian
query_in_russian = translate_to_ru(query)[0]["translation_text"]
else:
query_in_russian = query
# Compute query embedding
query_embedding = embedding_model.encode([query_in_russian])[0]
# Find the most relevant chunk
similarities = cosine_similarity([query_embedding], chunk_embeddings)[0]
best_idx = similarities.argmax()
best_sim = similarities[best_idx]
if best_sim < SIMILARITY_THRESHOLD:
# Fallback if no good match
fallback_msg = "I'm sorry, I couldn't find a relevant answer in the knowledge base."
if query_language != "ru":
# Translate fallback message to English as a minimal step
# For full multilingual support, use a language-specific model here.
fallback_msg = fallback_msg # This message is already in English, assume user can understand.
return fallback_msg
most_relevant_section = structured_chunks[best_idx][1]
# Process the most relevant chunk with QA
# result_in_russian = qa_chain.run(input_documents=[{"text": most_relevant_section}], question=query_in_russian)
#result_in_russian = qa_chain.run(input_documents=[Document(page_content=most_relevant_section)], question=query_in_russian)
#result_in_russian = qa_chain.run(input_documents=[{"context": most_relevant_section}], question=query_in_russian)
#result_in_russian = qa_chain.run(input_documents=[Document(page_content=most_relevant_section)], question=query_in_russian)
result_in_russian = qa_pipeline(
question=query_in_russian,
context=most_relevant_section
)
# Translate answer back to the original language as best as we can
# final_answer = translate_answer_back(result_in_russian, query_language)
final_answer = translate_answer_back(result_in_russian["answer"], query_language)
return final_answer
def admin_interface(url):
return fetch_and_structure_content(url)
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Multilingual Chatbot with Optimized Knowledge Base")
gr.Markdown("This chatbot fetches documentation from a given URL, structures it, and provides answers to user queries in multiple languages.")
# Admin Panel
with gr.Column():
gr.Markdown("### Admin Panel")
gr.Markdown("Enter the source URL below and click 'Update Knowledge Base' to fetch and structure the content.")
url_input = gr.Textbox(label="Enter the URL of the Documentation")
update_button = gr.Button("Update Knowledge Base")
update_output = gr.Textbox(label="Update Status", interactive=False)
update_button.click(admin_interface, inputs=url_input, outputs=update_output)
# Display last update time if available
if last_update_time:
gr.Markdown(f"**Last Update Time (UTC):** {last_update_time}")
else:
gr.Markdown("**Knowledge base not yet updated.**")
# User Query Interface
gr.Markdown("### User Chat Interface")
gr.Markdown("Ask your question in any language. The system will attempt to detect your language, translate the question into Russian, find the best answer, and then translate the answer back to your language or English if direct translation is not available.")
query = gr.Textbox(label="Enter your question in any language")
output = gr.Textbox(label="Answer", interactive=False)
submit = gr.Button("Submit")
submit.click(chatbot, inputs=query, outputs=output)
demo.launch()