import requests from bs4 import BeautifulSoup import gradio as gr from langchain.docstore.document import Document from langchain.chains.question_answering import load_qa_chain # from langchain.llms import HuggingFaceHub from transformers import pipeline from langchain.llms import HuggingFacePipeline from langchain.chains.question_answering import load_qa_chain from transformers import pipeline from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity from langdetect import detect import json import os import numpy as np import time # -------------------------- # Configurable Parameters # -------------------------- CHUNK_SIZE = 500 # number of words per chunk SIMILARITY_THRESHOLD = 0.3 # fallback threshold if similarity is too low # Translation pipelines # Translation to Russian (for queries not in Russian) # translate_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-multi-en-ru") translate_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") # RU->EN for English queries translate_ru_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # Russian Language Model for QA #llm = HuggingFaceHub(repo_id="DeepPavlov/rubert-base-cased", model_kwargs={"temperature": 0}) # Create a QA pipeline using the DeepPavlov model directly qa_pipeline = pipeline( "question-answering", model="DeepPavlov/rubert-base-cased", tokenizer="DeepPavlov/rubert-base-cased" ) llm = HuggingFacePipeline(pipeline=qa_pipeline) qa_chain = load_qa_chain(llm, chain_type="stuff") # Embedding Model embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Global cache last_update_time = None structured_chunks = [] # Will store tuples: (section_title, chunk_text) chunk_embeddings = None original_language = "ru" # default language for knowledge base (Russian) # -------------------------- # Utility Functions # -------------------------- def chunk_text(text, chunk_size=CHUNK_SIZE): """Split a text into chunks of approximately chunk_size words.""" words = text.split() chunks = [] for i in range(0, len(words), chunk_size): chunk = " ".join(words[i:i+chunk_size]) chunks.append(chunk) return chunks def fetch_and_structure_content(url): global structured_chunks, chunk_embeddings, last_update_time try: response = requests.get(url) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Extract content under

tags structured_sections = {} for section in soup.find_all("h3"): section_title = section.get_text(strip=True) section_content = [] for sibling in section.find_next_siblings(): if sibling.name == "h3": break text = sibling.get_text(strip=True) if text: section_content.append(text) full_section_text = " ".join(section_content).strip() if full_section_text: structured_sections[section_title] = full_section_text # Chunking each section to improve retrieval granularity structured_chunks = [] for title, content in structured_sections.items(): section_chunks = chunk_text(content, CHUNK_SIZE) for idx, ch in enumerate(section_chunks): # Store (title, chunk_text) structured_chunks.append((f"{title} - part {idx+1}", ch)) # Precompute embeddings chunk_texts = [ch[1] for ch in structured_chunks] chunk_embeddings = embedding_model.encode(chunk_texts) # Save structured chunks and embeddings with open("knowledge_base.json", "w", encoding="utf-8") as f: json.dump(structured_chunks, f, ensure_ascii=False) np.save("embeddings.npy", chunk_embeddings) last_update_time = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()) return "Knowledge base successfully updated and structured!" except Exception as e: return f"Error fetching or structuring content: {str(e)}" # Load from cache if available if os.path.exists("knowledge_base.json") and os.path.exists("embeddings.npy"): with open("knowledge_base.json", "r", encoding="utf-8") as f: structured_chunks = json.load(f) chunk_embeddings = np.load("embeddings.npy") def detect_language(query): try: lang = detect(query) return lang except: return "unknown" def translate_answer_back(result_in_russian, original_lang): """Translate the Russian answer back to the original language if possible. - If original is 'ru': return as is. - If original is 'en': RU->EN - Otherwise: fallback to English for now. """ if original_lang == "ru": return result_in_russian elif original_lang == "en": return translate_ru_to_en(result_in_russian)[0]["translation_text"] else: # For other languages, a more complex approach would be needed. # As a simple fallback, translate to English. # (Future improvement: Add a dictionary of available RU->XX models) return translate_ru_to_en(result_in_russian)[0]["translation_text"] def chatbot(query): global structured_chunks, chunk_embeddings if not structured_chunks or chunk_embeddings is None: return "Knowledge base is empty or not loaded. Please run an update." # Detect query language query_language = detect_language(query) if query_language == "unknown": return "Unable to detect the query language. Please try again, or specify your language." # Translate query to Russian if needed if query_language != "ru": # Translate the query into Russian query_in_russian = translate_to_ru(query)[0]["translation_text"] else: query_in_russian = query # Compute query embedding query_embedding = embedding_model.encode([query_in_russian])[0] # Find the most relevant chunk similarities = cosine_similarity([query_embedding], chunk_embeddings)[0] best_idx = similarities.argmax() best_sim = similarities[best_idx] if best_sim < SIMILARITY_THRESHOLD: # Fallback if no good match fallback_msg = "I'm sorry, I couldn't find a relevant answer in the knowledge base." if query_language != "ru": # Translate fallback message to English as a minimal step # For full multilingual support, use a language-specific model here. fallback_msg = fallback_msg # This message is already in English, assume user can understand. return fallback_msg most_relevant_section = structured_chunks[best_idx][1] # Process the most relevant chunk with QA # result_in_russian = qa_chain.run(input_documents=[{"text": most_relevant_section}], question=query_in_russian) #result_in_russian = qa_chain.run(input_documents=[Document(page_content=most_relevant_section)], question=query_in_russian) #result_in_russian = qa_chain.run(input_documents=[{"context": most_relevant_section}], question=query_in_russian) #result_in_russian = qa_chain.run(input_documents=[Document(page_content=most_relevant_section)], question=query_in_russian) result_in_russian = qa_pipeline( question=query_in_russian, context=most_relevant_section ) # Translate answer back to the original language as best as we can # final_answer = translate_answer_back(result_in_russian, query_language) final_answer = translate_answer_back(result_in_russian["answer"], query_language) return final_answer def admin_interface(url): return fetch_and_structure_content(url) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("## Multilingual Chatbot with Optimized Knowledge Base") gr.Markdown("This chatbot fetches documentation from a given URL, structures it, and provides answers to user queries in multiple languages.") # Admin Panel with gr.Column(): gr.Markdown("### Admin Panel") gr.Markdown("Enter the source URL below and click 'Update Knowledge Base' to fetch and structure the content.") url_input = gr.Textbox(label="Enter the URL of the Documentation") update_button = gr.Button("Update Knowledge Base") update_output = gr.Textbox(label="Update Status", interactive=False) update_button.click(admin_interface, inputs=url_input, outputs=update_output) # Display last update time if available if last_update_time: gr.Markdown(f"**Last Update Time (UTC):** {last_update_time}") else: gr.Markdown("**Knowledge base not yet updated.**") # User Query Interface gr.Markdown("### User Chat Interface") gr.Markdown("Ask your question in any language. The system will attempt to detect your language, translate the question into Russian, find the best answer, and then translate the answer back to your language or English if direct translation is not available.") query = gr.Textbox(label="Enter your question in any language") output = gr.Textbox(label="Answer", interactive=False) submit = gr.Button("Submit") submit.click(chatbot, inputs=query, outputs=output) demo.launch()