### Putting it all together
You can use Doc2Query or Doc2Query-- in an indexing pipeline to build an index of the expanded documents:
D
Doc2Query[−−]
D
Indexer
IDX
```python
import pyterrer as pt
pt.init()
import pyterrier_doc2query
doc2query = pyterrier_doc2query.Doc2Query(append=True)
dataset = pt.get_dataset('irds:msmarco-passage')
indexer = pt.IterDictIndexer('./msmarco_psg')
indxer_pipe = doc2query >> indexer
indxer_pipe.index(dataset.get_corpus_iter())
```
Once you built an index, you can retrieve from it using any retrieval function (often BM25):
```python
bm25 = pt.BatchRetrieve('./msmarco_psg', wmodel="BM25")
```
### References & Credits
- Rodrigo Nogueira and Jimmy Lin. [From doc2query to docTTTTTquery](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf).
- Mitko Gospodinov, Sean MacAvaney, and Craig Macdonald. Doc2Query--: When Less is More. ECIR 2023.
- Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021.