|
|
|
|
|
import gradio as gr |
|
|
|
from settings import (DEFAULT_IMAGE_RESOLUTION, DEFAULT_NUM_IMAGES, |
|
MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES) |
|
from utils import randomize_seed_fn |
|
|
|
|
|
def create_demo(process): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image() |
|
prompt = gr.Textbox(label='Prompt') |
|
run_button = gr.Button('Run') |
|
with gr.Accordion('Advanced options', open=False): |
|
preprocessor_name = gr.Radio(label='Preprocessor', |
|
choices=['UPerNet', 'None'], |
|
type='value', |
|
value='UPerNet') |
|
num_samples = gr.Slider(label='Number of images', |
|
minimum=1, |
|
maximum=MAX_NUM_IMAGES, |
|
value=DEFAULT_NUM_IMAGES, |
|
step=1) |
|
image_resolution = gr.Slider( |
|
label='Image resolution', |
|
minimum=256, |
|
maximum=MAX_IMAGE_RESOLUTION, |
|
value=DEFAULT_IMAGE_RESOLUTION, |
|
step=256) |
|
preprocess_resolution = gr.Slider( |
|
label='Preprocess resolution', |
|
minimum=128, |
|
maximum=512, |
|
value=512, |
|
step=1) |
|
num_steps = gr.Slider(label='Number of steps', |
|
minimum=1, |
|
maximum=100, |
|
value=20, |
|
step=1) |
|
guidance_scale = gr.Slider(label='Guidance scale', |
|
minimum=0.1, |
|
maximum=30.0, |
|
value=9.0, |
|
step=0.1) |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=1000000, |
|
step=1, |
|
value=0, |
|
randomize=True) |
|
randomize_seed = gr.Checkbox(label='Randomize seed', |
|
value=True) |
|
a_prompt = gr.Textbox( |
|
label='Additional prompt', |
|
value='best quality, extremely detailed') |
|
n_prompt = gr.Textbox( |
|
label='Negative prompt', |
|
value= |
|
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' |
|
) |
|
with gr.Column(): |
|
result = gr.Gallery(label='Output', |
|
show_label=False, |
|
columns=2, |
|
object_fit='scale-down') |
|
inputs = [ |
|
image, |
|
prompt, |
|
a_prompt, |
|
n_prompt, |
|
num_samples, |
|
image_resolution, |
|
preprocess_resolution, |
|
num_steps, |
|
guidance_scale, |
|
seed, |
|
preprocessor_name, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
).then( |
|
fn=process, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name='segmentation', |
|
) |
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
from model import Model |
|
model = Model(task_name='segmentation') |
|
demo = create_demo(model.process_segmentation) |
|
demo.queue().launch() |
|
|