Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import cv2 | |
import numpy as np | |
from skimage.metrics import hausdorff_distance | |
from matplotlib import pyplot as plt | |
def get_input_imgs_path(input_data_dir): | |
path = {} | |
names = ['000', 'ori_000'] | |
for name in names: | |
jpg_path = os.path.join(input_data_dir, f"{name}.jpg") | |
png_path = os.path.join(input_data_dir, f"{name}.png") | |
if os.path.exists(jpg_path): | |
path[name] = jpg_path | |
elif os.path.exists(png_path): | |
path[name] = png_path | |
return path | |
def rgba_to_rgb(image, bg_color=[255, 255, 255]): | |
if image.shape[-1] == 3: return image | |
rgba = image.astype(float) | |
rgb = rgba[:, :, :3].copy() | |
alpha = rgba[:, :, 3] / 255.0 | |
bg = np.ones((image.shape[0], image.shape[1], 3), dtype=np.float32) | |
bg = bg * np.array(bg_color, dtype=np.float32) | |
rgb = rgb * alpha[:, :, np.newaxis] + bg * (1 - alpha[:, :, np.newaxis]) | |
rgb = rgb.astype(np.uint8) | |
return rgb | |
def resize_with_aspect_ratio(image1, image2, pad_value=[255, 255, 255]): | |
aspect_ratio1 = float(image1.shape[1]) / float(image1.shape[0]) | |
aspect_ratio2 = float(image2.shape[1]) / float(image2.shape[0]) | |
top_pad, bottom_pad, left_pad, right_pad = 0, 0, 0, 0 | |
if aspect_ratio1 < aspect_ratio2: | |
new_width = (aspect_ratio2 * image1.shape[0]) | |
right_pad = left_pad = int((new_width - image1.shape[1]) / 2) | |
else: | |
new_height = (image1.shape[1] / aspect_ratio2) | |
bottom_pad = top_pad = int((new_height - image1.shape[0]) / 2) | |
image1_padded = cv2.copyMakeBorder( | |
image1, top_pad, bottom_pad, left_pad, right_pad, cv2.BORDER_CONSTANT, value=pad_value | |
) | |
return image1_padded | |
def estimate_img_mask(image): | |
# 转换为灰度图像 | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# 使用大津法进行阈值分割 | |
# _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
# mask_otsu = thresh.astype(bool) | |
# thresh_gray = 240 | |
# 使用 Canny 边缘检测算法找到边缘 | |
edges = cv2.Canny(gray, 20, 50) | |
# 使用形态学操作扩展边缘 | |
kernel = np.ones((3, 3), np.uint8) | |
edges_dilated = cv2.dilate(edges, kernel, iterations=1) | |
contours, _ = cv2.findContours(edges_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
# 创建一个空的 mask | |
mask = np.zeros_like(gray, dtype=np.uint8) | |
# 根据轮廓信息填充 mask(使用 thickness=cv2.FILLED 参数) | |
cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED) | |
mask = mask.astype(bool) | |
return mask | |
def compute_img_diff(img1, img2, matches1, matches1_from_2, vis=False): | |
scale = 0.125 | |
gray_trunc_thres = 25 / 255.0 | |
# Match | |
if matches1.shape[0] > 0: | |
match_scale = np.max(np.ptp(matches1, axis=-1)) | |
match_dists = np.sqrt(np.sum((matches1 - matches1_from_2) ** 2, axis=-1)) | |
dist_threshold = match_scale * 0.01 | |
match_num = np.sum(match_dists <= dist_threshold) | |
match_rate = np.mean(match_dists <= dist_threshold) | |
else: | |
match_num = 0 | |
match_rate = 0 | |
# IOU | |
img1_mask = estimate_img_mask(img1) | |
img2_mask = estimate_img_mask(img2) | |
img_intersection = (img1_mask == 1) & (img2_mask == 1) | |
img_union = (img1_mask == 1) | (img2_mask == 1) | |
intersection = np.sum(img_intersection == 1) | |
union = np.sum(img_union == 1) | |
mask_iou = intersection / union if union != 0 else 0 | |
# Gray | |
height, width = img1.shape[:2] | |
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) | |
img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) | |
img1_gray = cv2.GaussianBlur(img1_gray, (7, 7), 0) | |
img2_gray = cv2.GaussianBlur(img2_gray, (7, 7), 0) | |
# Gray Diff | |
img1_gray_small = cv2.resize(img1_gray, (int(width * scale), int(height * scale)), | |
interpolation=cv2.INTER_LINEAR) / 255.0 | |
img2_gray_small = cv2.resize(img2_gray, (int(width * scale), int(height * scale)), | |
interpolation=cv2.INTER_LINEAR) / 255.0 | |
img_gray_small_diff = np.abs(img1_gray_small - img2_gray_small) | |
gray_diff = img_gray_small_diff.sum() / (union * scale) if union != 0 else 1 | |
img_gray_small_diff_trunc = img_gray_small_diff.copy() | |
img_gray_small_diff_trunc[img_gray_small_diff < gray_trunc_thres] = 0 | |
gray_diff_trunc = img_gray_small_diff_trunc.sum() / (union * scale) if union != 0 else 1 | |
# Edge | |
img1_edge = cv2.Canny(img1_gray, 100, 200) | |
img2_edge = cv2.Canny(img2_gray, 100, 200) | |
bw_edges1 = (img1_edge > 0).astype(bool) | |
bw_edges2 = (img2_edge > 0).astype(bool) | |
hausdorff_dist = hausdorff_distance(bw_edges1, bw_edges2) | |
if vis == True: | |
fig, axs = plt.subplots(1, 4, figsize=(15, 5)) | |
axs[0].imshow(img1_gray, cmap='gray') | |
axs[0].set_title('Img1') | |
axs[1].imshow(img2_gray, cmap='gray') | |
axs[1].set_title('Img2') | |
axs[2].imshow(img1_mask) | |
axs[2].set_title('Mask1') | |
axs[3].imshow(img2_mask) | |
axs[3].set_title('Mask2') | |
plt.show() | |
plt.figure() | |
mask_cmp = np.zeros((height, width, 3)) | |
mask_cmp[img_intersection, 1] = 1 | |
mask_cmp[img_union, 0] = 1 | |
plt.imshow(mask_cmp) | |
plt.show() | |
fig, axs = plt.subplots(1, 4, figsize=(15, 5)) | |
axs[0].imshow(img1_gray_small, cmap='gray') | |
axs[0].set_title('Img1 Gray') | |
axs[1].imshow(img2_gray_small, cmap='gray') | |
axs[1].set_title('Img2 Gary') | |
axs[2].imshow(img_gray_small_diff, cmap='gray') | |
axs[2].set_title('diff') | |
axs[3].imshow(img_gray_small_diff_trunc, cmap='gray') | |
axs[3].set_title('diff_trunct') | |
plt.show() | |
fig, axs = plt.subplots(1, 2, figsize=(15, 5)) | |
axs[0].imshow(img1_edge, cmap='gray') | |
axs[0].set_title('img1_edge') | |
axs[1].imshow(img2_edge, cmap='gray') | |
axs[1].set_title('img2_edge') | |
plt.show() | |
info = {} | |
info['match_num'] = match_num | |
info['match_rate'] = match_rate | |
info['mask_iou'] = mask_iou | |
info['gray_diff'] = gray_diff | |
info['gray_diff_trunc'] = gray_diff_trunc | |
info['hausdorff_dist'] = hausdorff_dist | |
return info | |
def predict_match_success_human(info): | |
match_num = info['match_num'] | |
match_rate = info['match_rate'] | |
mask_iou = info['mask_iou'] | |
gray_diff = info['gray_diff'] | |
gray_diff_trunc = info['gray_diff_trunc'] | |
hausdorff_dist = info['hausdorff_dist'] | |
if mask_iou > 0.95: | |
return True | |
if match_num < 20 or match_rate < 0.7: | |
return False | |
if mask_iou > 0.80 and gray_diff < 0.040 and gray_diff_trunc < 0.010: | |
return True | |
if mask_iou > 0.70 and gray_diff < 0.050 and gray_diff_trunc < 0.008: | |
return True | |
''' | |
if match_rate<0.70 or match_num<3000: | |
return False | |
if (mask_iou>0.85 and hausdorff_dist<20)or (gray_diff<0.015 and gray_diff_trunc<0.01) or match_rate>=0.90: | |
return True | |
''' | |
return False | |
def predict_match_success(info, model=None): | |
if model == None: | |
return predict_match_success_human(info) | |
else: | |
feat_name = ['match_num', 'match_rate', 'mask_iou', 'gray_diff', 'gray_diff_trunc', 'hausdorff_dist'] | |
# 提取特征 | |
features = [info[f] for f in feat_name] | |
# 预测 | |
pred = model.predict([features])[0] | |
return pred >= 0.5 |