Spaces:
Running
on
L40S
Running
on
L40S
File size: 14,356 Bytes
68cd723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import sys
import io
import os
import cv2
import math
import numpy as np
from scipy.signal import medfilt
from scipy.spatial import KDTree
from matplotlib import pyplot as plt
from PIL import Image
from dust3r.inference import inference
from dust3r.utils.image import load_images# , resize_images
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from dust3r.utils.geometry import find_reciprocal_matches, xy_grid
from third_party.utils.camera_utils import remap_points
from third_party.utils.img_utils import rgba_to_rgb, resize_with_aspect_ratio
from third_party.utils.img_utils import compute_img_diff
from PIL.ImageOps import exif_transpose
import torchvision.transforms as tvf
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
def suppress_output(func):
def wrapper(*args, **kwargs):
original_stdout = sys.stdout
original_stderr = sys.stderr
sys.stdout = io.StringIO()
sys.stderr = io.StringIO()
try:
return func(*args, **kwargs)
finally:
sys.stdout = original_stdout
sys.stderr = original_stderr
return wrapper
def _resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = Image.LANCZOS
elif S <= long_edge_size:
interp = Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def resize_images(imgs_list, size, square_ok=False):
""" open and convert all images in a list or folder to proper input format for DUSt3R
"""
imgs = []
for img in imgs_list:
img = exif_transpose(Image.fromarray(img)).convert('RGB')
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
else:
# resize long side to 512
img = _resize_pil_image(img, size)
W, H = img.size
cx, cy = W//2, H//2
if size == 224:
half = min(cx, cy)
img = img.crop((cx-half, cy-half, cx+half, cy+half))
else:
halfw, halfh = ((2*cx)//16)*8, ((2*cy)//16)*8
if not (square_ok) and W == H:
halfh = 3*halfw/4
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
W2, H2 = img.size
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
return imgs
@suppress_output
def infer_match(images, model, vis=False, niter=300, lr=0.01, schedule='cosine', device="cuda:0"):
batch_size = 1
schedule = 'cosine'
lr = 0.01
niter = 300
images_packed = resize_images(images, size=512, square_ok=True)
# images_packed = images
pairs = make_pairs(images_packed, scene_graph='complete', prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=batch_size, verbose=False)
scene = global_aligner(output, device=device, mode=GlobalAlignerMode.PointCloudOptimizer)
loss = scene.compute_global_alignment(init="mst", niter=niter, schedule=schedule, lr=lr)
# retrieve useful values from scene:
imgs = scene.imgs
# focals = scene.get_focals()
# poses = scene.get_im_poses()
pts3d = scene.get_pts3d()
confidence_masks = scene.get_masks()
# visualize reconstruction
# scene.show()
# find 2D-2D matches between the two images
pts2d_list, pts3d_list = [], []
for i in range(2):
conf_i = confidence_masks[i].cpu().numpy()
pts2d_list.append(xy_grid(*imgs[i].shape[:2][::-1])[conf_i]) # imgs[i].shape[:2] = (H, W)
pts3d_list.append(pts3d[i].detach().cpu().numpy()[conf_i])
if pts3d_list[-1].shape[0] == 0:
return np.zeros((0, 2)), np.zeros((0, 2))
reciprocal_in_P2, nn2_in_P1, num_matches = find_reciprocal_matches(*pts3d_list)
matches_im1 = pts2d_list[1][reciprocal_in_P2]
matches_im0 = pts2d_list[0][nn2_in_P1][reciprocal_in_P2]
# visualize a few matches
if vis == True:
print(f'found {num_matches} matches')
n_viz = 20
match_idx_to_viz = np.round(np.linspace(0, num_matches - 1, n_viz)).astype(int)
viz_matches_im0, viz_matches_im1 = matches_im0[match_idx_to_viz], matches_im1[match_idx_to_viz]
H0, W0, H1, W1 = *imgs[0].shape[:2], *imgs[1].shape[:2]
img0 = np.pad(imgs[0], ((0, max(H1 - H0, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img1 = np.pad(imgs[1], ((0, max(H0 - H1, 0)), (0, 0), (0, 0)), 'constant', constant_values=0)
img = np.concatenate((img0, img1), axis=1)
plt.figure()
plt.imshow(img)
cmap = plt.get_cmap('jet')
for i in range(n_viz):
(x0, y0), (x1, y1) = viz_matches_im0[i].T, viz_matches_im1[i].T
plt.plot([x0, x1 + W0], [y0, y1], '-+', color=cmap(i / (n_viz - 1)), scalex=False, scaley=False)
plt.show(block=True)
matches_im0 = remap_points(images[0].shape, matches_im0)
matches_im1 = remap_points(images[1].shape, matches_im1)
return matches_im0, matches_im1
def point_transform(H, pt):
"""
@param: H is homography matrix of dimension (3x3)
@param: pt is the (x, y) point to be transformed
Return:
returns a transformed point ptrans = H*pt.
"""
a = H[0, 0] * pt[0] + H[0, 1] * pt[1] + H[0, 2]
b = H[1, 0] * pt[0] + H[1, 1] * pt[1] + H[1, 2]
c = H[2, 0] * pt[0] + H[2, 1] * pt[1] + H[2, 2]
return [a / c, b / c]
def points_transform(H, pt_x, pt_y):
"""
@param: H is homography matrix of dimension (3x3)
@param: pt is the (x, y) point to be transformed
Return:
returns a transformed point ptrans = H*pt.
"""
a = H[0, 0] * pt_x + H[0, 1] * pt_y + H[0, 2]
b = H[1, 0] * pt_x + H[1, 1] * pt_y + H[1, 2]
c = H[2, 0] * pt_x + H[2, 1] * pt_y + H[2, 2]
return (a / c, b / c)
def motion_propagate(old_points, new_points, old_size, new_size, H_size=(21, 21)):
"""
@param: old_points are points in old_frame that are
matched feature points with new_frame
@param: new_points are points in new_frame that are
matched feature points with old_frame
@param: old_frame is the frame to which
motion mesh needs to be obtained
@param: H is the homography between old and new points
Return:
returns a motion mesh in x-direction
and y-direction for old_frame
"""
# spreads motion over the mesh for the old_frame
x_motion = np.zeros(H_size)
y_motion = np.zeros(H_size)
mesh_x_num, mesh_y_num = H_size[0], H_size[1]
pixels_x, pixels_y = (old_size[1]) / (mesh_x_num - 1), (old_size[0]) / (mesh_y_num - 1)
radius = max(pixels_x, pixels_y) * 5
sigma = radius / 3.0
H_global = None
if old_points.shape[0] > 3:
# pre-warping with global homography
H_global, _ = cv2.findHomography(old_points, new_points, cv2.RANSAC)
if H_global is None:
old_tmp = np.array([[0, 0], [0, old_size[0]], [old_size[1], 0], [old_size[1], old_size[0]]])
new_tmp = np.array([[0, 0], [0, new_size[0]], [new_size[1], 0], [new_size[1], new_size[0]]])
H_global, _ = cv2.findHomography(old_tmp, new_tmp, cv2.RANSAC)
for i in range(mesh_x_num):
for j in range(mesh_y_num):
pt = [pixels_x * i, pixels_y * j]
ptrans = point_transform(H_global, pt)
x_motion[i, j] = ptrans[0]
y_motion[i, j] = ptrans[1]
# disturbute feature motion vectors
weighted_move_x = np.zeros(H_size)
weighted_move_y = np.zeros(H_size)
# 构建 KDTree
tree = KDTree(old_points)
# 计算权重和移动值
for i in range(mesh_x_num):
for j in range(mesh_y_num):
vertex = [pixels_x * i, pixels_y * j]
neighbor_indices = tree.query_ball_point(vertex, radius, workers=-1)
if len(neighbor_indices) > 0:
pts = old_points[neighbor_indices]
sts = new_points[neighbor_indices]
ptrans_x, ptrans_y = points_transform(H_global, pts[:, 0], pts[:, 1])
moves_x = sts[:, 0] - ptrans_x
moves_y = sts[:, 1] - ptrans_y
dists = np.sqrt((vertex[0] - pts[:, 0]) ** 2 + (vertex[1] - pts[:, 1]) ** 2)
weights_x = np.exp(-(dists ** 2) / (2 * sigma ** 2))
weights_y = np.exp(-(dists ** 2) / (2 * sigma ** 2))
weighted_move_x[i, j] = np.sum(weights_x * moves_x) / (np.sum(weights_x) + 0.1)
weighted_move_y[i, j] = np.sum(weights_y * moves_y) / (np.sum(weights_y) + 0.1)
x_motion_mesh = x_motion + weighted_move_x
y_motion_mesh = y_motion + weighted_move_y
'''
# apply median filter (f-1) on obtained motion for each vertex
x_motion_mesh = np.zeros((mesh_x_num, mesh_y_num), dtype=float)
y_motion_mesh = np.zeros((mesh_x_num, mesh_y_num), dtype=float)
for key in x_motion.keys():
try:
temp_x_motion[key].sort()
x_motion_mesh[key] = x_motion[key]+temp_x_motion[key][len(temp_x_motion[key])//2]
except KeyError:
x_motion_mesh[key] = x_motion[key]
try:
temp_y_motion[key].sort()
y_motion_mesh[key] = y_motion[key]+temp_y_motion[key][len(temp_y_motion[key])//2]
except KeyError:
y_motion_mesh[key] = y_motion[key]
# apply second median filter (f-2) over the motion mesh for outliers
#x_motion_mesh = medfilt(x_motion_mesh, kernel_size=[3, 3])
#y_motion_mesh = medfilt(y_motion_mesh, kernel_size=[3, 3])
'''
return x_motion_mesh, y_motion_mesh
def mesh_warp_points(points, x_motion_mesh, y_motion_mesh, img_size):
ptrans = []
mesh_x_num, mesh_y_num = x_motion_mesh.shape
pixels_x, pixels_y = (img_size[1]) / (mesh_x_num - 1), (img_size[0]) / (mesh_y_num - 1)
for pt in points:
i = int(pt[0] // pixels_x)
j = int(pt[1] // pixels_y)
src = [[i * pixels_x, j * pixels_y],
[(i + 1) * pixels_x, j * pixels_y],
[i * pixels_x, (j + 1) * pixels_y],
[(i + 1) * pixels_x, (j + 1) * pixels_y]]
src = np.asarray(src)
dst = [[x_motion_mesh[i, j], y_motion_mesh[i, j]],
[x_motion_mesh[i + 1, j], y_motion_mesh[i + 1, j]],
[x_motion_mesh[i, j + 1], y_motion_mesh[i, j + 1]],
[x_motion_mesh[i + 1, j + 1], y_motion_mesh[i + 1, j + 1]]]
dst = np.asarray(dst)
H, _ = cv2.findHomography(src, dst, cv2.RANSAC)
x, y = points_transform(H, pt[0], pt[1])
ptrans.append([x, y])
return np.array(ptrans)
def mesh_warp_frame(frame, x_motion_mesh, y_motion_mesh, resize):
"""
@param: frame is the current frame
@param: x_motion_mesh is the motion_mesh to
be warped on frame along x-direction
@param: y_motion_mesh is the motion mesh to
be warped on frame along y-direction
@param: resize is the desired output size (tuple of width, height)
Returns:
returns a mesh warped frame according
to given motion meshes x_motion_mesh,
y_motion_mesh, resized to the specified size
"""
map_x = np.zeros(resize, np.float32)
map_y = np.zeros(resize, np.float32)
mesh_x_num, mesh_y_num = x_motion_mesh.shape
pixels_x, pixels_y = (resize[1]) / (mesh_x_num - 1), (resize[0]) / (mesh_y_num - 1)
for i in range(mesh_x_num - 1):
for j in range(mesh_y_num - 1):
src = [[i * pixels_x, j * pixels_y],
[(i + 1) * pixels_x, j * pixels_y],
[i * pixels_x, (j + 1) * pixels_y],
[(i + 1) * pixels_x, (j + 1) * pixels_y]]
src = np.asarray(src)
dst = [[x_motion_mesh[i, j], y_motion_mesh[i, j]],
[x_motion_mesh[i + 1, j], y_motion_mesh[i + 1, j]],
[x_motion_mesh[i, j + 1], y_motion_mesh[i, j + 1]],
[x_motion_mesh[i + 1, j + 1], y_motion_mesh[i + 1, j + 1]]]
dst = np.asarray(dst)
H, _ = cv2.findHomography(src, dst, cv2.RANSAC)
start_x = math.ceil(pixels_x * i)
end_x = math.ceil(pixels_x * (i + 1))
start_y = math.ceil(pixels_y * j)
end_y = math.ceil(pixels_y * (j + 1))
x, y = np.meshgrid(range(start_x, end_x), range(start_y, end_y), indexing='ij')
map_x[y, x], map_y[y, x] = points_transform(H, x, y)
# deforms mesh and directly outputs the resized frame
resized_frame = cv2.remap(frame, map_x, map_y,
interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,
borderValue=(255, 255, 255))
return resized_frame
def infer_warp_mesh_img(src, dst, model, vis=False):
if isinstance(src, str):
image1 = cv2.imread(src, cv2.IMREAD_UNCHANGED)
image2 = cv2.imread(dst, cv2.IMREAD_UNCHANGED)
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
elif isinstance(src, Image.Image):
image1 = np.array(src)
image2 = np.array(dst)
else:
assert isinstance(src, np.ndarray)
image1 = rgba_to_rgb(image1)
image2 = rgba_to_rgb(image2)
image1_padded = resize_with_aspect_ratio(image1, image2)
resized_image1 = cv2.resize(image1_padded, (image2.shape[1], image2.shape[0]), interpolation=cv2.INTER_AREA)
matches_im0, matches_im1 = infer_match([resized_image1, image2], model, vis=vis)
matches_im0 = matches_im0 * image1_padded.shape[0] / resized_image1.shape[0]
# print('Estimate Mesh Grid')
mesh_x, mesh_y = motion_propagate(matches_im1, matches_im0, image2.shape[:2], image1_padded.shape[:2])
aligned_image = mesh_warp_frame(image1_padded, mesh_x, mesh_y, (image2.shape[0], image2.shape[1]))
matches_im0_from_im1 = mesh_warp_points(matches_im1, mesh_x, mesh_y, (image2.shape[1], image2.shape[0]))
info = compute_img_diff(aligned_image, image2, matches_im0, matches_im0_from_im1, vis=vis)
return aligned_image, info
|