#!/bin/sh set -x set -e input_rgb_root=/path/to/input/RGB/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] input RGB saved_root=/path/to/saved/root_directory # The parent directory that saving [sintel, scannet, KITTI, bonn, NYUv2] prediction gpus=0,1,2,3 # Using 4 GPU, you can adjust it according to your device # infer sintel python benchmark/infer/infer_batch.py \ --meta_path ./eval/csv/meta_sintel.csv \ --saved_root ${saved_root} \ --saved_dataset_folder results_sintel \ --input_rgb_root ${input_rgb_root} \ --process_length 50 \ --gpus ${gpus} \ --dataset sintel \ # infer scannet python benchmark/infer/infer_batch.py \ --meta_path ./eval/csv/meta_scannet_test.csv \ --saved_root ${saved_root} \ --saved_dataset_folder results_scannet \ --input_rgb_root ${input_rgb_root} \ --process_length 90 \ --gpus ${gpus} \ --dataset scannet \ # infer kitti python benchmark/infer/infer_batch.py \ --meta_path ./eval/csv/meta_kitti_val.csv \ --saved_root ${saved_root} \ --saved_dataset_folder results_kitti \ --input_rgb_root ${input_rgb_root} \ --process_length 110 \ --gpus ${gpus} \ --dataset kitti \ # infer bonn python benchmark/infer/infer_batch.py \ --meta_path ./eval/csv/meta_bonn.csv \ --saved_root ${saved_root} \ --saved_dataset_folder results_bonn \ --input_rgb_root ${input_rgb_root} \ --process_length 110 \ --gpus ${gpus} \ --dataset bonn \ # infer nyu python benchmark/infer/infer_batch.py \ --meta_path ./eval/csv/meta_nyu_test.csv \ --saved_root ${saved_root} \ --saved_dataset_folder results_nyu \ --input_rgb_root ${input_rgb_root} \ --process_length 1 \ --gpus ${gpus} \ --overlap 0 \ --dataset nyu \