# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import warnings from typing import Optional, Sequence import torch import numpy as np import cv2 import mmcv import torchvision import torchvision.transforms as transforms import mmengine import mmengine.fileio as fileio from mmengine.hooks import Hook from mmengine.runner import Runner from mmengine.visualization import Visualizer from matplotlib import pyplot as plt from mmpose.registry import HOOKS from mmpose.structures import PoseDataSample, merge_data_samples @HOOKS.register_module() class CustomPoseVisualizationHook(Hook): """Pose Estimation Visualization Hook. Used to visualize validation and testing process prediction results. In the testing phase: 1. If ``show`` is True, it means that only the prediction results are visualized without storing data, so ``vis_backends`` needs to be excluded. 2. If ``out_dir`` is specified, it means that the prediction results need to be saved to ``out_dir``. In order to avoid vis_backends also storing data, so ``vis_backends`` needs to be excluded. 3. ``vis_backends`` takes effect if the user does not specify ``show`` and `out_dir``. You can set ``vis_backends`` to WandbVisBackend or TensorboardVisBackend to store the prediction result in Wandb or Tensorboard. Args: enable (bool): whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False. interval (int): The interval of visualization. Defaults to 50. score_thr (float): The threshold to visualize the bboxes and masks. Defaults to 0.3. show (bool): Whether to display the drawn image. Default to False. wait_time (float): The interval of show (s). Defaults to 0. out_dir (str, optional): directory where painted images will be saved in testing process. backend_args (dict, optional): Arguments to instantiate the preifx of uri corresponding backend. Defaults to None. """ def __init__( self, enable: bool = False, interval: int = 50, kpt_thr: float = 0.3, show: bool = False, wait_time: float = 0., max_vis_samples: int = 16, scale: int = 4, out_dir: Optional[str] = None, backend_args: Optional[dict] = None, ): self._visualizer: Visualizer = Visualizer.get_current_instance() self.interval = interval self.kpt_thr = kpt_thr self.show = show if self.show: # No need to think about vis backends. self._visualizer._vis_backends = {} warnings.warn('The show is True, it means that only ' 'the prediction results are visualized ' 'without storing data, so vis_backends ' 'needs to be excluded.') self.wait_time = wait_time self.enable = enable self.out_dir = out_dir self._test_index = 0 self.backend_args = backend_args self.max_vis_samples = max_vis_samples self.scale = scale def after_train_iter(self, runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[PoseDataSample]) -> None: """Run after every ``self.interval`` validation iterations. Args: runner (:obj:`Runner`): The runner of the validation process. batch_idx (int): The index of the current batch in the val loop. data_batch (dict): Data from dataloader. outputs (Sequence[:obj:`PoseDataSample`]): Outputs from model. """ if self.enable is False: return # ## check if the rank is 0 if not runner.rank == 0: return # There is no guarantee that the same batch of images # is visualized for each evaluation. total_curr_iter = runner.iter if total_curr_iter % self.interval != 0: return ## we divide by 255 to be compatible with the visualization functions image = torch.cat([input.unsqueeze(dim=0)/255 for input in data_batch['inputs']], dim=0) ## B x 3 x H x W, not normalized in BGR format output = outputs['vis_preds'].detach() ## B x 17 x H x W batch_size = min(self.max_vis_samples, len(image)) image = image[:batch_size] output = output[:batch_size] target = [] for i in range(batch_size): target.append(data_batch['data_samples'][i].get('gt_fields').get('heatmaps').unsqueeze(dim=0)) target = torch.cat(target, dim=0) target_weight = [] for i in range(batch_size): target_weight.append(data_batch['data_samples'][i].get('gt_instance_labels').get('keypoints_visible').unsqueeze(dim=0)) target_weight = torch.cat(target_weight, dim=0) ##------------------------------------ vis_dir = os.path.join(runner.work_dir, 'vis_data') if not os.path.exists(vis_dir): os.makedirs(vis_dir, exist_ok=True) prefix = os.path.join(vis_dir, 'train') suffix = str(total_curr_iter).zfill(6) original_image = image save_batch_heatmaps(original_image, target, '{}_{}_hm_gt.jpg'.format(prefix, suffix), normalize=False, scale=self.scale, is_rgb=False) save_batch_heatmaps(original_image, output, '{}_{}_hm_pred.jpg'.format(prefix, suffix), normalize=False, scale=self.scale, is_rgb=False) save_batch_image_with_joints(255*original_image, target, target_weight, \ '{}_{}_gt.jpg'.format(prefix, suffix), scale=self.scale, is_rgb=False) save_batch_image_with_joints(255*original_image, output, torch.ones_like(target_weight), \ '{}_{}_pred.jpg'.format(prefix, suffix), scale=self.scale, is_rgb=False) return ###------------------helpers----------------------- ###------------------------------------------------------ def batch_unnormalize_image(images, mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]): normalize = transforms.Normalize(mean=mean, std=std) images[:, 0, :, :] = (images[:, 0, :, :]*normalize.std[0]) + normalize.mean[0] images[:, 1, :, :] = (images[:, 1, :, :]*normalize.std[1]) + normalize.mean[1] images[:, 2, :, :] = (images[:, 2, :, :]*normalize.std[2]) + normalize.mean[2] return images def get_max_preds(batch_heatmaps): ''' get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) ''' assert isinstance(batch_heatmaps, np.ndarray), \ 'batch_heatmaps should be numpy.ndarray' assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = batch_heatmaps.shape[0] num_joints = batch_heatmaps.shape[1] width = batch_heatmaps.shape[3] heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) ## B x 17 maxvals = np.amax(heatmaps_reshaped, 2) ## B x 17 maxvals = maxvals.reshape((batch_size, num_joints, 1)) ## B x 17 x 1 idx = idx.reshape((batch_size, num_joints, 1)) ## B x 17 x 1 preds = np.tile(idx, (1, 1, 2)).astype(np.float32) ## B x 17 x 2, like repeat in pytorch preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def save_batch_heatmaps(batch_image, batch_heatmaps, file_name, normalize=True, scale=4, is_rgb=True): ''' batch_image: [batch_size, channel, height, width] batch_heatmaps: ['batch_size, num_joints, height, width] file_name: saved file name ''' ## normalize image if normalize: batch_image = batch_image.clone() min = float(batch_image.min()) max = float(batch_image.max()) batch_image.add_(-min).div_(max - min + 1e-5) ## check if type of batch_heatmaps is numpy.ndarray if isinstance(batch_heatmaps, np.ndarray): preds, maxvals = get_max_preds(batch_heatmaps) batch_heatmaps = torch.from_numpy(batch_heatmaps) else: preds, maxvals = get_max_preds(batch_heatmaps.detach().cpu().numpy()) preds = preds*scale ## scale to original image size batch_size = batch_heatmaps.size(0) num_joints = batch_heatmaps.size(1) heatmap_height = int(batch_heatmaps.size(2)*scale) heatmap_width = int(batch_heatmaps.size(3)*scale) grid_image = np.zeros((batch_size*heatmap_height, (num_joints+1)*heatmap_width, 3), dtype=np.uint8) for i in range(batch_size): image = batch_image[i].mul(255)\ .clamp(0, 255)\ .byte()\ .permute(1, 2, 0)\ .cpu().numpy() heatmaps = batch_heatmaps[i].mul(255)\ .clamp(0, 255)\ .byte()\ .cpu().numpy() if is_rgb == True: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) resized_image = cv2.resize(image, (int(heatmap_width), int(heatmap_height))) height_begin = heatmap_height * i height_end = heatmap_height * (i + 1) for j in range(num_joints): cv2.circle(resized_image, (int(preds[i][j][0]), int(preds[i][j][1])), 1, [0, 0, 255], 1) heatmap = heatmaps[j, :, :] colored_heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) colored_heatmap = cv2.resize(colored_heatmap, (int(heatmap_width), int(heatmap_height))) masked_image = colored_heatmap*0.7 + resized_image*0.3 cv2.circle(masked_image, (int(preds[i][j][0]), int(preds[i][j][1])), 1, [0, 0, 255], 1) width_begin = heatmap_width * (j+1) width_end = heatmap_width * (j+2) grid_image[height_begin:height_end, width_begin:width_end, :] = \ masked_image grid_image[height_begin:height_end, 0:heatmap_width, :] = resized_image cv2.imwrite(file_name, grid_image) def save_batch_image_with_joints(batch_image, batch_heatmaps, batch_target_weight, file_name, is_rgb=True, scale=4, nrow=8, padding=2): ''' batch_image: [batch_size, channel, height, width] batch_joints: [batch_size, num_joints, 3], batch_joints_vis: [batch_size, num_joints, 1], } ''' B, C, H, W = batch_image.size() num_joints = batch_heatmaps.size(1) ## check if type of batch_heatmaps is numpy.ndarray if isinstance(batch_heatmaps, np.ndarray): batch_joints, _ = get_max_preds(batch_heatmaps) else: batch_joints, _ = get_max_preds(batch_heatmaps.detach().cpu().numpy()) batch_joints = batch_joints*scale ## 4 is the ratio of output heatmap and input image if isinstance(batch_joints, torch.Tensor): batch_joints = batch_joints.cpu().numpy() if isinstance(batch_target_weight, torch.Tensor): batch_target_weight = batch_target_weight.cpu().numpy() batch_target_weight = batch_target_weight.reshape(B, num_joints) ## B x 17 grid = [] for i in range(B): image = batch_image[i].permute(1, 2, 0).cpu().numpy() #image_size x image_size x RGB image = image.copy() kps = batch_joints[i] kps_vis = batch_target_weight[i].reshape(num_joints, 1) kps = np.concatenate((kps, kps_vis), axis=1) ## we need rgb images. if BGR convert to RGB if is_rgb == False: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) kp_vis_image = coco_vis_keypoints(image, kps, vis_thres=0.3, alpha=0.7) ## H, W, C kp_vis_image = kp_vis_image.transpose((2, 0, 1)).astype(np.float32) kp_vis_image = torch.from_numpy(kp_vis_image.copy()) grid.append(kp_vis_image) grid = torchvision.utils.make_grid(grid, nrow, padding) ndarr = grid.byte().permute(1, 2, 0).cpu().numpy() ndarr = cv2.cvtColor(ndarr, cv2.COLOR_RGB2BGR) cv2.imwrite(file_name, ndarr) return ###------------------------vis------------------------------- # standard COCO format, 17 joints COCO_KP_ORDER = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] def kp_connections(keypoints): kp_lines = [ [keypoints.index('left_eye'), keypoints.index('right_eye')], [keypoints.index('left_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('right_ear')], [keypoints.index('left_eye'), keypoints.index('left_ear')], [keypoints.index('right_shoulder'), keypoints.index('right_elbow')], [keypoints.index('right_elbow'), keypoints.index('right_wrist')], [keypoints.index('left_shoulder'), keypoints.index('left_elbow')], [keypoints.index('left_elbow'), keypoints.index('left_wrist')], [keypoints.index('right_hip'), keypoints.index('right_knee')], [keypoints.index('right_knee'), keypoints.index('right_ankle')], [keypoints.index('left_hip'), keypoints.index('left_knee')], [keypoints.index('left_knee'), keypoints.index('left_ankle')], [keypoints.index('right_shoulder'), keypoints.index('left_shoulder')], [keypoints.index('right_hip'), keypoints.index('left_hip')], ] return kp_lines COCO_KP_CONNECTIONS = kp_connections(COCO_KP_ORDER) # ------------------------------------------------------------------------------------ def coco_vis_keypoints(image, kps, vis_thres=0.3, alpha=0.7): # image is [image_size, image_size, RGB] #numpy array # kps is [17, 3] #numpy array kps = kps.astype(np.int16) bgr_image = image[:, :, ::-1] ##if this is directly in function call, this produces weird opecv cv2 Umat errors kp_image = vis_keypoints(bgr_image, kps.T, vis_thres, alpha) #convert to bgr kp_image = kp_image[:, :, ::-1] #bgr to rgb return kp_image # ------------------------------------------------------------------------------------ def vis_keypoints(img, kps, kp_thresh=-1, alpha=0.7): """Visualizes keypoints (adapted from vis_one_image). kps has shape (3, #keypoints) where 3 rows are (x, y, depth z). needs a BGR image as it only uses opencv functions, returns a bgr image """ dataset_keypoints = COCO_KP_ORDER kp_lines = COCO_KP_CONNECTIONS # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv. cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors] # Perform the drawing on a copy of the image, to allow for blending. kp_mask = np.copy(img) # Draw mid shoulder / mid hip first for better visualization. mid_shoulder = ( kps[:2, dataset_keypoints.index('right_shoulder')] + kps[:2, dataset_keypoints.index('left_shoulder')]) // 2 sc_mid_shoulder = np.minimum( kps[2, dataset_keypoints.index('right_shoulder')], kps[2, dataset_keypoints.index('left_shoulder')]) mid_hip = ( kps[:2, dataset_keypoints.index('right_hip')] + kps[:2, dataset_keypoints.index('left_hip')]) // 2 sc_mid_hip = np.minimum( kps[2, dataset_keypoints.index('right_hip')], kps[2, dataset_keypoints.index('left_hip')]) nose_idx = dataset_keypoints.index('nose') if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh: kp_mask = cv2.line( kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]), color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA) if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: kp_mask = cv2.line( kp_mask, tuple(mid_shoulder), tuple(mid_hip), color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA) # Draw the keypoints. for l in range(len(kp_lines)): i1 = kp_lines[l][0] i2 = kp_lines[l][1] p1 = kps[0, i1], kps[1, i1] p2 = kps[0, i2], kps[1, i2] if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: kp_mask = cv2.line( kp_mask, p1, p2, color=colors[l], thickness=2, lineType=cv2.LINE_AA) if kps[2, i1] > kp_thresh: kp_mask = cv2.circle( kp_mask, p1, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) if kps[2, i2] > kp_thresh: kp_mask = cv2.circle( kp_mask, p2, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA) ## weird opencv bug on cv2UMat vs numpy if type(kp_mask) != type(img): kp_mask = kp_mask.get() # Blend the keypoints. result = cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0) return result