import os import gradio as gr import torch import numpy as np import librosa from efficientat.models.MobileNetV3 import get_model as get_mobilenet, get_ensemble_model from efficientat.models.preprocess import AugmentMelSTFT from efficientat.helpers.utils import NAME_TO_WIDTH, labels from torch import autocast from contextlib import nullcontext from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate from langchain.chains.conversation.memory import ConversationalBufferWindowMemory MODEL_NAME = "mn40_as" device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = get_mobilenet(width_mult=NAME_TO_WIDTH(MODEL_NAME), pretrained_name=MODEL_NAME) model.to(device) model.eval() def audio_tag( audio_path, sample_rate=32000, window_size=800, hop_size=320, n_mels=128, cuda=True, ): (waveform, _) = librosa.core.load(audio_path, sr=sample_rate, mono=True) mel = AugmentMelSTFT(n_mels=n_mels, sr=sample_rate, win_length=window_size, hopsize=hop_size) mel.to(device) mel.eval() waveform = torch.from_numpy(waveform[None, :]).to(device) # our models are trained in half precision mode (torch.float16) # run on cuda with torch.float16 to get the best performance # running on cpu with torch.float32 gives similar performance, using torch.bfloat16 is worse with torch.no_grad(), autocast(device_type=device.type) if cuda and torch.cuda.is_available() else nullcontext(): spec = mel(waveform) preds, features = model(spec.unsqueeze(0)) preds = torch.sigmoid(preds.float()).squeeze().cpu().numpy() sorted_indexes = np.argsort(preds)[::-1] output = {} # Print audio tagging top probabilities label = labels[sorted_indexes[0]] return formatted_message(label) cached_audio_class = None template = None prompt = None chain = None def formatted_message(audio_class): if cached_audio_class != audio_class: cached_audio_class = audio_class prefix = '''You are going to act as a magical tool that allows for humans to communicate with non-human entities like rocks, crackling fire, trees, animals, and the wind. In order to do this, we're going to provide you a data string which represents the audio input, the source of the audio, and the human's text input for the conversation. The goal is for you to embody the source of the audio, and use the length and variance in the signal data to produce plausible responses to the humans input. Remember to embody the the source data. When we start the conversation, you should generate a "personality profile" for the source and utilize that personality profile in your responses. Let's begin:''' suffix = f'''Source: {audio_class} Length of Audio in Seconds: {audio_length} Human Input: {userText} {audio_class} Response:''' template = prefix + suffix prompt = PromptTemplate( input_variables=["history", "human_input"], template=template ) chatgpt_chain = LLMChain( llm=OpenAI(temperature=.5, openai_api_key=session_token), prompt=prompt, verbose=True, memory=ConversationalBufferWindowMemory(k=2), ) output = chatgpt_chain.predict(human_input=message) return output demo = gr.Interface( audio_tag, gr.Audio(source="upload", type="filepath", label="Your audio"), gr.Textbox(), examples=[["metro_station-paris.wav"]] ).launch(debug=True)