import logging import os import re import time import traceback import openai import pandas as pd import requests import tweepy from huggingface_hub import upload_file logger = logging.getLogger() logging.basicConfig(level=logging.INFO) logger.setLevel(logging.INFO) bot_user_id = 1612106815096999936 bot_user_name = "RoastOrToastGPT" persistent_storage_repo_id = "team6/roast-history" persistent_storage_file_name = "history.csv" persistent_storage_file_url = ( f"https://huggingface.co/datasets/{persistent_storage_repo_id}/resolve/main/{persistent_storage_file_name}" ) # will be used to remove the @roastortoastgpt from the tweet text (case insensitive) pattern_at_mention = re.compile(re.escape("@roastortoastgpt"), re.IGNORECASE) print(persistent_storage_file_url) openai_key = os.environ.get("openai_api_key") consumer_key = os.environ.get("consumer_key") consumer_secret_key = os.environ.get("consumer_secret_key") access_token = os.environ.get("access_token") access_token_secret = os.environ.get("access_token_secret") bearer_token = os.environ.get("bearer_token") hf_token = os.environ.get("hf_token") client = tweepy.Client( bearer_token=bearer_token, consumer_key=consumer_key, consumer_secret=consumer_secret_key, access_token=access_token, access_token_secret=access_token_secret, wait_on_rate_limit=True, ) def response(text): openai.api_key = openai_key response = openai.Completion.create( engine="text-davinci-002", prompt=text, temperature=0.9, max_tokens=60, top_p=1, frequency_penalty=0, presence_penalty=1.0, ) return response.choices[0].text.strip() def roast(text): return response( f"Humorously mock, humiliate and hurt the user's feelings with a well-timed joke, diss or comeback based on the info.\n\nInfo: {text}\n\nResponse:" ) def toast(text): return response( f"Give the user a genuine and unique compliment to make them feel good about themselves based on the info in a hood style manner.\n\nInfo: {text}\n\nResponse:" ) def reply_to_mentions(): df = pd.read_csv(persistent_storage_file_url) last_tweet_id = df.iloc[-1]["id"] # List of unique conversation ids that we've already responded to. # This is to prevent us from responding to the same conversation twice. all_convo_ids = df["conversation_id"].unique().tolist() # get the mentions. These are both direct mentions and replies to our tweets mentions = client.get_users_mentions( id=bot_user_id, expansions=["author_id", "in_reply_to_user_id", "referenced_tweets.id"], tweet_fields=["conversation_id"], since_id=last_tweet_id, ) # if there are no new mentions, return if mentions.data is None: # log it logger.info("No new mentions found") return data_to_add = {"id": [], "conversation_id": []} # otherwise, iterate through the mentions and respond to them # we iterate through the mentions in reverse order so that we respond to the oldest mentions first for mention in reversed(mentions.data): if mention.author_id == bot_user_id: # don't respond to our own tweets logger.info(f"Skipping {mention.id} as it is from the bot") continue if mention.in_reply_to_user_id == bot_user_id: # don't respond to our own tweets logger.info(f"Skipping {mention.id} as the tweet to roast is from the bot") continue if not mention.referenced_tweets: logger.info(f"Skipping {mention.id} as it is not a reply") continue # if we've already responded to this conversation, skip it # also should catch the case where we've already responded to this tweet (though that shouldn't happen) if mention.conversation_id in all_convo_ids: logger.info(f"Skipping {mention.id} as we've already responded to this conversation") continue logger.info(f"Responding to {mention.id}, which said {mention.text}") tweet_to_roast_id = mention.referenced_tweets[0].id tweet_to_roast = client.get_tweet(tweet_to_roast_id) text_to_roast = tweet_to_roast.data.text mention_text = mention.text mention_text = pattern_at_mention.sub("", mention_text) logger.info(f"Mention Text: {mention_text}") if "roast" in mention_text.lower(): logger.info(f"Roasting {mention.id}") text_out = roast(text_to_roast) elif "toast" in mention_text.lower(): logger.info(f"Toasting {mention.id}") text_out = toast(text_to_roast) else: logger.info(f"Skipping {mention.id} as it is not a roast or toast") continue # Quote tweet the tweet to roast logger.info(f"Quote tweeting {tweet_to_roast_id} with response: {text_out}") quote_tweet_response = client.create_tweet( text=text_out, quote_tweet_id=tweet_to_roast_id, ) print("QUOTE TWEET RESPONSE", quote_tweet_response.data) response_quote_tweet_id = quote_tweet_response.data.get("id") logger.info(f"Response Quote Tweet ID: {response_quote_tweet_id}") response_quote_tweet_url = f"https://twitter.com/{bot_user_name}/status/{response_quote_tweet_id}" logger.info(f"Response Quote Tweet URL: {response_quote_tweet_url}") # reply to the mention with the link to the response tweet logger.info(f"Responding to: {mention.id}") response_reply = client.create_tweet( text=f"Here's my response: {response_quote_tweet_url}", in_reply_to_tweet_id=mention.id, ) response_reply_id = response_reply.data.get("id") logger.info(f"Response Reply ID: {response_reply_id}") # add the mention to the history data_to_add["id"].append(mention.id) data_to_add["conversation_id"].append(mention.conversation_id) # add a line break to the log logger.info("-" * 100) # update the history df and upload it to the persistent storage repo if len(data_to_add["id"]) == 0: logger.info("No new mentions to add to the history") return logger.info(f"Adding {len(data_to_add['id'])} new mentions to the history") df_to_add = pd.DataFrame(data_to_add) df = pd.concat([df, df_to_add], ignore_index=True) df.to_csv(persistent_storage_file_name, index=False) upload_file( repo_id=persistent_storage_repo_id, path_or_fileobj=persistent_storage_file_name, path_in_repo=persistent_storage_file_name, repo_type="dataset", token=hf_token, ) def main(): logger.info("Starting up...") while True: try: # Dummy request to keep the Hugging Face Space awake # Not really working as far as I can tell # logger.info("Pinging Hugging Face Space...") # requests.get("https://team6-roast.hf.space/", timeout=5) logger.info("Replying to mentions...") reply_to_mentions() except Exception as e: logger.error(e) traceback.print_exc() logger.info("Sleeping for 30 seconds...") time.sleep(30) if __name__ == "__main__": main()