import torch import re import gradio as gr from transformers import GPT2Tokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel encoder_checkpoint = 'google/vit-base-patch16-224' decoder_checkpoint = 'surajp/gpt2-hindi' model_checkpoint = 'team-indain-image-caption/hindi-image-captioning' feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) def predict(image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(sample, max_length = max_length)[0] print("*"*20) print(caption_ids) caption_text = clean_text(tokenizer.decode(caption_ids)) return caption_text input = gr.inputs.Image(label="Image to search", type = 'pil', optional=False) output = gr.outputs.Textbox(type="auto",label="Captions") article = "This HuggingFace Space presents a demo for Image captioning in Hindi built with VIT Encoder and GPT2 Decoder" interface = gr.Interface( fn=predict, inputs = input, theme="grass", outputs=output, # examples = examples, title=title, description=article, ) interface.launch(debug=True)