import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from torch.cuda.amp import custom_bwd, custom_fwd from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb from .quant_linear import * class QuantLlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, hidden_size, num_heads, qkv_proj, o_proj, rotary_emb, ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads if (self.head_dim * num_heads) != self.hidden_size: raise ValueError(f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {num_heads}).") self.qkv_proj = qkv_proj self.o_proj = o_proj self.rotary_emb = rotary_emb def _shape(self, tensor, seq_len, bsz): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward(self, hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False): """Input shape: Batch x Time x Channel""" bsz, q_len, _ = hidden_states.size() qkv_states = self.qkv_proj(hidden_states) query_states, key_states, value_states = torch.split(qkv_states, self.hidden_size, dim=2) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) #transformers==4.29.0: kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) #transformers==4.28.0: # kv_seq_len = key_states.shape[-2] # offset = 0 # if past_key_value is not None: # offset = past_key_value[0].shape[-2] # kv_seq_len += offset # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, offset) # [bsz, nh, t, hd] is_causal = past_key_value is None if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None with torch.backends.cuda.sdp_kernel(enable_math=False): attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=is_causal) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def make_quant_attn(model): """ Replace all LlamaAttention modules with QuantLlamaAttention modules, fusing the q, k, v projections. """ for name, m in model.named_modules(): if not isinstance(m, LlamaAttention): continue q_proj = m.q_proj k_proj = m.k_proj v_proj = m.v_proj qweights = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1) qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1) scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1) g_idx = torch.cat([q_proj.g_idx, k_proj.g_idx, v_proj.g_idx], dim=0) bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None qkv_layer = QuantLinear(q_proj.bits, q_proj.groupsize, q_proj.infeatures, q_proj.outfeatures + k_proj.outfeatures + v_proj.outfeatures, True if q_proj.bias is not None else False) qkv_layer.qweight = qweights qkv_layer.qzeros = qzeros qkv_layer.scales = scales qkv_layer.g_idx = g_idx qkv_layer.bias = bias attn = QuantLlamaAttention(m.hidden_size, m.num_heads, qkv_layer, m.o_proj, m.rotary_emb) if '.' in name: parent_name = name.rsplit('.', 1)[0] child_name = name[len(parent_name) + 1:] parent = model.get_submodule(parent_name) else: parent_name = '' parent = model child_name = name #print(f"Replacing {name} with quant_attn; parent: {parent_name}, child's name: {child_name}") setattr(parent, child_name, attn)