TOT_CUDA="0,1" CUDAs=(${TOT_CUDA//,/ }) CUDA_NUM=${#CUDAs[@]} # PORT="12345" # ../Chinese-Vicuna/sample/instruct/chat_data.jsonl #DATA_PATH="sample/instruct/legislation2.json" #"../dataset/instruction/guanaco_non_chat_mini_52K-utf8.json" #"./sample/merge_sample.json" #DATA_PATH="./sample/instruct/chat_data.jsonl" DATA_PATH="../Chinese-Vicuna/sample/legislation60k.jsonl" #DATA_PATH="../Chinese-Vicuna/sample/instructchat_data.jsonl" #working OUTPUT_PATH="../llama2-62kjudgement-20sept" MODEL_PATH="../chinese-llama-2-13b" # lora_checkpoint="../Llama2-Chinese-13b-Chat-LoRA" from_data_beginning=True TEST_SIZE=300 #CUDA_VISIBLE_DEVICES=0 python finetune.py \ TORCH_DISTRIBUTED_DEBUG=DETAIL CUDA_VISIBLE_DEVICES=${TOT_CUDA} torchrun --standalone --nnodes=1 --nproc_per_node=$CUDA_NUM finetune.py \ --data_path $DATA_PATH \ --output_path $OUTPUT_PATH \ --model_path $MODEL_PATH \ --eval_steps 200 \ --save_steps 200 \ --test_size $TEST_SIZE \ # --resume_from_checkpoint $lora_checkpoint