import trlx from examples.randomwalks import generate_random_walks from trlx.data.default_configs import ( ModelConfig, OptimizerConfig, PPOConfig, SchedulerConfig, TokenizerConfig, TrainConfig, TRLConfig, ) default_config = TRLConfig( train=TrainConfig( seq_length=10, epochs=20, total_steps=10000, batch_size=100, checkpoint_interval=10000, eval_interval=20, pipeline="PromptPipeline", trainer="AcceleratePPOTrainer", ), model=ModelConfig(model_path="CarperAI/randomwalks", num_layers_unfrozen=-1), tokenizer=TokenizerConfig(tokenizer_path="CarperAI/randomwalks", truncation_side="right"), optimizer=OptimizerConfig(name="adamw", kwargs=dict(lr=3.0e-4, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6)), scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=3.0e-4)), method=PPOConfig( name="PPOConfig", num_rollouts=128, chunk_size=128, ppo_epochs=4, init_kl_coef=0, target=None, horizon=10000, gamma=1, lam=0.95, cliprange=0.2, cliprange_value=0.2, vf_coef=1.2, scale_reward="ignored", ref_mean=None, ref_std=None, cliprange_reward=1, gen_kwargs=dict( max_new_tokens=9, top_k=0, top_p=1.0, do_sample=True, ), ), ) def main(hparams={}): config = TRLConfig.update(default_config, hparams) metric_fn, prompts, *_ = generate_random_walks(seed=config.train.seed) trlx.train( # An "optimality" reward function is used, with scores in [0,1] # depending on how close the path is to the shortest possible path. reward_fn=lambda samples, **kwargs: metric_fn(samples)["optimality"], # The prompts are simply the first nodes (represented as letters) to # start from. prompts=prompts, eval_prompts=prompts, metric_fn=lambda samples, **kwargs: metric_fn(samples), config=config, ) if __name__ == "__main__": import json import sys hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) main(hparams)