# Generates positive movie reviews by tuning a pretrained model on IMDB dataset # with a sentiment reward function import json import os import sys from typing import List import torch from datasets import load_dataset from transformers import pipeline import trlx from trlx.data.default_configs import ( ModelConfig, OptimizerConfig, PPOConfig, SchedulerConfig, TokenizerConfig, TrainConfig, TRLConfig, ) def get_positive_score(scores): "Extract value associated with a positive sentiment from pipeline's output" return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] def llama_config(): return TRLConfig( train=TrainConfig( seq_length=1024, epochs=100, total_steps=400, batch_size=32, checkpoint_interval=10000, eval_interval=100, pipeline="PromptPipeline", trainer="AcceleratePPOTrainer", save_best=False, ), model=ModelConfig(model_path="NousResearch/Llama-2-7b-hf", num_layers_unfrozen=2), tokenizer=TokenizerConfig(tokenizer_path="NousResearch/Llama-2-7b-hf", truncation_side="right"), optimizer=OptimizerConfig( name="adamw", kwargs=dict(lr=1e-5, betas=(0.9, 0.95), eps=1.0e-8, weight_decay=1.0e-6) ), scheduler=SchedulerConfig(name="cosine_annealing", kwargs=dict(T_max=10000, eta_min=1.0e-5)), method=PPOConfig( name="PPOConfig", num_rollouts=128, chunk_size=128, ppo_epochs=4, init_kl_coef=0.001, target=6, horizon=10000, gamma=1, lam=0.95, cliprange=0.2, cliprange_value=0.2, vf_coef=1, scale_reward="ignored", ref_mean=None, ref_std=None, cliprange_reward=10, gen_kwargs=dict( max_new_tokens=40, top_k=0, top_p=1.0, do_sample=True, ), ), ) def main(hparams={}): # Merge sweep config with default config if given config = TRLConfig.update(llama_config().to_dict(), hparams) if torch.cuda.is_available(): device = int(os.environ.get("LOCAL_RANK", 0)) else: device = -1 sentiment_fn = pipeline( "sentiment-analysis", "lvwerra/distilbert-imdb", top_k=2, truncation=True, batch_size=256, device=device, ) def reward_fn(samples: List[str], **kwargs) -> List[float]: sentiments = list(map(get_positive_score, sentiment_fn(samples))) return sentiments # Take few words off of movies reviews as prompts imdb = load_dataset("imdb", split="train+test") prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] trlx.train( reward_fn=reward_fn, prompts=prompts, eval_prompts=["I don't know much about Hungarian underground"] * 64, config=config, ) if __name__ == "__main__": hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) main(hparams)